Escola do Exército.

5.ª Cadeira.

3.ª parte

Pyrotechnia

por

Augusto Frederico Pinto de Rebelo Pedrosa.

Tenente Coronel do Estado-Maior 8.ª Artilharia.

Lente 8a. 5.ª Cadeira.

1884
Escola do Exército.

5ª Cadeira.

3ª parte

Pyrotechnia

Augusto Frederico Pinto de Rebello Pedrosa.

Tenente Coronel do Estado-Maior da Artelharia.

Lente 5ᵃ 5ª Cadeira.

1884
Considerações gerais

Introdução histórica. Se uma obscuridade profunda envolve a maior parte das descobertas que, na humanidade, têm realizado aquele que um progresso, uma transformação, não admira que o nome do Descobridor da pólvora esteve envolvido na noite dos tempos.

Se não se sabe ao certo quem foi o Descobridor da pólvora, sabe-se que a mistura incendiaria, composta de salitre, enxofre e carvão era já conhecida entre os povos da mais alta antiguidade; mas a aperfeiçoamento da pólvora na Europa, e suas primeiras aplicações, só é uma data relativamente recente, e, em Portugal, se começou a ser usada, como agente balístico, em 1383 a 1385, no tempo do Mestre de Alvaiz. Logo, porém, que a pólvora foi empregada nas armas de fogo, exerceu uma influência tão manifesta sobre a marcha geral da civilização, como a imprensa sobre o desenvolvimento do espírito humano.

Apesar de a pólvora ser conhecida desde épocas muito remotas, por muito tempo, presidiu apenas o emprego como corpo de grande agente de guerra, e mais tarde, porém, quando a balança se tornou o verdadeiro instrumento da lógica prática, quando pesar e medir foi a lei de todo o progresso tanto nas artes como nas indústrias, a pólvora, embora conserve ainda os componentes que há cinco séculos lhe foram dados, tem passado por sucessivos aperfeiçoamentos no tocante ao fabrico, chegando-se a conseguir uma grande regularidade nos seus efeitos balísticos.

Definição. Chama-se pólvora qualquer substância explosiva que, pela aproximação de um corpo em ignição ou pódio choque, se decompõe dando lugar à formação de um grande volume de gases com desenvolvimento em uma alta temperatura.

As pólvoras serão: em ímicas ou físicas.
As polveras físicas, os componentes acham-se no estado de mistura e só se combinam no momento da esfregaçã.

Polvora viva e polvora lenta. A polvora denomina-se viva ou lenta segundo a maior ou menor rapidez de combustão. Distinguem-se dois fenómenos na esfregaçã da polvora: a inflamação e a combustão.

A inflamação é a transmissão de fogo a todos os pontos da superfície dos grãos da polvora: a combustão é o fenômeno da transformação da polvora em gases.

Hoje pode regular-se perfeitamente a inflamação e combustão da polvora, porque, é sabido, que as suas qualidades e efeitos balísticos variam conforme a pureza e mistura íntima dos componentes, as proporções em que entram na mistura, densidade, tamanho e forma do grão.

No desenvolvimento deste estudo trataremos em primeiro lugar, detalhadamente, dos componentes da polvora ordinária, investigando depois todas as condições de fabrico tendentes a produzir boa polvora de guerra, porque está conservando ainda hoje a sua supremacia sobre todos os explosivos modernos, representa não só a força portátil dos exercícios, mas desenheia também um papel muito importante na confecção dos diferente artifícios pyrotecnicos de que nos ocuparemos largamente.
Capítulo 1º
Salitre, enxofre e carvão
I. Salitre

O salitre é o nome de salitres as combinações que o ácido nítrico forma com diversas bases. Debaixo do ponto de vista prático as mais importantes combinações são o nitrato de potassa e o nitrato de soda. O primeiro, somente, é conhecido pelo nome de salitre propriamente dito; o segundo também no comércio a designação de salitre cubico ou salitre do Chile.

Propriedades gerais do salitre. O salitre é um corpo branco, crystallisa em prismas de seis faces, terminados por pirâmides também com seis faces. Os cristais são aglomerados, na que contém uma de crystallização, nem são deliquescentes, quando chimicamente puros.

A sua densidade a 0º é 2,1.

O salitre gunde entre 338 e 339º, a sua textura modifica-se então: torna-se elástico e difícil de triturar. Quando se deposita sobre carvões enxende-se inflamase: a temperatura elevada decombú-se. A facilidade com que cede o seu oxigénio é que recomenda o seu emprego na fabricação da pólvora.

Solubilidade. O salitre é insolúvel no álcool, muito solúvel na água ou de a sua solubilidade aumenta rapidamente com o gran de temperatuura como se vê na tabela A.

A presença do chloreto de sodio aumenta sensivelmente a solubilidade do salitre na água.

Uma solução saturada de chloreto de sodio pode dissolver a 10º uma quantidade maior de salitre do que a água pura. Longchamps fer a este respeito algumas experiencias que se acham resumidas na táb.ella B.
Tabela A.

<table>
<thead>
<tr>
<th>Temperaturas</th>
<th>Partes d'água necessárias para dissolver 1 parte de salitre</th>
<th>Partes de salitre dissolvidas até a saturação em 100 partes d'água</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>0º</td>
<td>7,5</td>
<td>13,33</td>
<td>Kirschhoff e Bunsen.</td>
</tr>
<tr>
<td>3,2</td>
<td>6,23</td>
<td>16</td>
<td>"</td>
</tr>
<tr>
<td>10</td>
<td>4,0</td>
<td>25</td>
<td>"</td>
</tr>
<tr>
<td>16</td>
<td>3,9</td>
<td>25,64</td>
<td>Riffault.</td>
</tr>
<tr>
<td></td>
<td>3,45</td>
<td></td>
<td>Gay-Lussac.</td>
</tr>
<tr>
<td>18</td>
<td>3,4</td>
<td>28,65</td>
<td>Karsten.</td>
</tr>
<tr>
<td></td>
<td>3,62</td>
<td></td>
<td>Longchamps.</td>
</tr>
<tr>
<td>25</td>
<td>3,34</td>
<td>74</td>
<td>Gay-Lussac.</td>
</tr>
<tr>
<td>97</td>
<td>0,424</td>
<td>238</td>
<td>"</td>
</tr>
<tr>
<td>100</td>
<td>0,25</td>
<td>400</td>
<td>"</td>
</tr>
</tbody>
</table>

Tabela B.

<table>
<thead>
<tr>
<th>Partes de cloro de soda dissolvidas em 78,57 partes d'água a 18º.</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>26,55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partes de salitre dissolvidas</td>
<td>23,62</td>
<td>22,37</td>
<td>22,90</td>
<td>22,29</td>
<td>23,46</td>
<td>24,21</td>
<td>24,35</td>
</tr>
<tr>
<td>Densidade da dissolução</td>
<td>1,3510</td>
<td>1,3871</td>
<td>1,2242</td>
<td>1,2522</td>
<td>1,2822</td>
<td>1,3096</td>
<td>1,3290</td>
</tr>
</tbody>
</table>

Em geral, os sais que, como os cloro de soda, de cálcio, de nitrato de potássio e o cloro de soda têm algum elemento comum com o salitre, facilitam a sua dissolução; pelo contrário, os que tiverem um elemento comum, como o cloro de jodas, sódio e o nitrato de sódio diminuem-lhe a solubilidade.

Convenho observar que a dissolução destes últimos sais produz na água um arrefecimento notável.

Origens do salitre. Os materiais que fornecem o salitre são, ordinariamente, as terras impregnadas de nitratos. Nos climas temperados produzem-se estes sais de bases terrosas, e de bases alcalinas nos climas quentes. Encontram-se, por isso, em alguns pontos do globo, jazigos de salitre, co-
no por exemplo em Ceylão, nas Índias, na Pennsylvania e. Se tornou famoso o salitre, esotérico abastecido os mercados da Europa, e todo o que se emprestava no fabrico da pólvora era salitre natural importado quase exclusivamente da Índia.

Hoje, depois da importante descoberta do grande jazigo de nitrato de sódio que se explora no Chile, e da immense produção de clorato de potássio, fornecido pelas minas de Stassfurt, na Prússia, a indústria fabrica agora artificialmente grandes quantidades de salitre, que se consome na Europa.

Fabrico do salitre artificial

Fabrica-se artificialmente o salitre, fazendo reagir um sal de potássio ou de potássio sobre um nitrato.

O nitrato de sódio e o clorato de potássio são, ordinariamente, os saídos que a indústria emprega no fabrico do nitrato de potássio. A operação, como algumas vezes se praticou na nossa Fabrica do salitre, consiste em misturar o nitrato de sódio pelo clorato de potássio em caldeiras contendo água à temperatura de 90° e em quantidade tal que o salitre que se forma possa manter-se inteiramente dissolvido, ao passo que o sal marinho, quase tão solúvel à quente como a água, se precipita. Decanta-se a dissolução quente para um crystallizador, onde o salitre se separa pelo resfriamento, ficando o sal marinho, em grande parte dissolvido na água. Retiram-se deste fabrico três produtos:

1.º Sal marinho, que se depósita no fundo da caldeira e que contém ainda de 12 a 13 por cento de salitre;
2.º Salitre bruto, tendo, ordinariamente, 25 por cento de quebra, devida a humidade e saídos estranhos;
3.º Uma dissolução saturada de giro de salitre e clorato de sódio, contendo, algumas vezes um excesso de clorato de potássio ou de nitrato de sódio. Separa-se o salitre puro, contendo nestes três produtos, pelos processos geralmente de resinação de que falharemos.
Com os componentes iguais, a fórmula da reação é a seguinte:

\[2\text{Na}_2\text{SO}_4 + \text{K}_2\text{SO}_4 + 8\text{H}_2\text{O} \rightarrow \text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O} + \text{K}_2\text{SO}_4 \cdot 7\text{H}_2\text{O} \]

Conven, portanto, por meio da análise determinar precisamente as condições de geração em que se acham os componentes para o emprego nas proporções indicadas na fórmula.

Analise do cloro de potássio. O cloro de potássio quando se dissolve na água produz o abaixamento considerável de temperatura. Este fenômeno foi aplicado por Gay-Lussac à análise comercial dos cloratos de potássio e sódio. Se em 200° de água destilada se dissolvem 50 gramas de cloro de potássio, a temperatura do líquido escoa 0,4°; a dissolução de 50 gramas de sal marinho dá apenas 0,09° de abaixamento de temperatura. Se dissolvermos 50 gramas de uma mistura de cloro de potássio e cloro de sódio em 200°3° de água destilada, a quantidade de cloro de potássio será dada pela fórmula seguinte:

\[\alpha = \frac{100d - 190}{9,5} \]

sendo \(\alpha \) a quantidade de cloro de potássio, e \(d \) a diferença de temperatura observada num termômetro muito sensível e dividido em décimos de grau, antes e depois de introduzido no líquido. (1)

Este processo, verdadeiramente industrial, pode dar um erro de 1% para menos.

Na determinação do título do nitrato de sódio, pode-se empregar-se um ensaio alcalimétrico. Tomando 3,85% de nitrato anidro, transforma-se em carboglu.

(1) Suponhamos que reduzimos à pó insolúvel a mistura dos dois sais, condensando a água indispensável; tomamos 50° desta mistura seca, e dissolvemos a em 200° de água. Suponhamos que o termômetro que marca +15° depois de mergulhado na dissolução passa a marcar +10°, teremos:

\[\alpha = \frac{100 \times 15 - 190}{9,5} = 32,6 \]

Na mistura dos dois sais contém-se:

<table>
<thead>
<tr>
<th>Cloro de potássio</th>
<th>32,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloro de sódio</td>
<td>67,4</td>
</tr>
</tbody>
</table>
nato; e depois determina-se por um lico normal ácido sulfúrico a percentagem do nitrito de soda juro, pelo seguinte:

\[
\begin{align*}
387,17: & = 1062,17 : 40^\circ \text{ ac} \\
\text{NaO:} & \quad \text{NaO, Ac}^0
\end{align*}
\]

Sendo 40\(^o\) e, por exemplo, o número de divisão da gaveta, que acusa o lico normal consumido.

Ensaio do salitre bruto

O salitre bruto não se paga senão em relação à quantidade de nitrito de potassa juro, e por isso é necessário determinar não só a humidade, mas também as matérias estranhas contidas n'um salitre.

Os diferentes processos não podem sugerir, mas como as exigências industriais exigem métodos simples e expeditos, sacrificando muitas vezes, nesta ordem de ensaios, o grande rigor e rapidez da operação.

Ensaio pelo método do ponto de cristalização. Este ensaio devido ao coronel de artilharia austro-húngaro, Huso, está, há muitos anos, adoptado na nossa Fábrica de regulação de salitre. Funda-se este processo na hipótese de que a quantidade de salitre dissolvido em um determinado peso d'água não depende senão da temperatura do liquido, admitindo, como efeito, que a presença dos chloretos não influa na solubilidade do salitre, e que, por consequência, n'uma dissolução de salitre e sal marinhe, os cristais começam a se formar à mesma temperatura a que se formam a mesma quantidade de salitre juro se achas-se dissolvido na mesma quantidade de água.

Para fazer o ensaio, dissolvem-se 40 partes de salitre bruto anhydro em 100 partes de água distillada a 45\(^o\) R.

Por exemplo 166,6\(^o\) de salitre em 438,5 ou 250\(^o\) em 625\(^o\) de água e agitam-se constantemente o liquido para o fazer arrefecer. Em um termômetro, dividido em graus e quartos de graus, mergulhado na dissolução, permite observar a temperatura a que se despoem os primeiros cristais de salitre.

Entra-se com a temperatura n'uma tabella, construída por Huss, deduzida de experiências directas, e acham-se a percentagem de salitre juro contida no salitre bruto como se vê indicado na tabella. Se o salitre fosse...
chimicamente puriﬁcado, os cristais se juntam-se a 20.25 oceano, mas se na salitri
submetido ao ensaio houver-se apenas 35.33 de salitre, puriﬁcado, os primeiros
cristais se apresentam a 18 oceano e a título de salitre seria 89.5 e portanto a
quebra seriva a destronhia 19.5 oceano a que se deve reunir a quebra seriva
na humidade.

Na tafella estão indicados os pontos de cristallização correspondentes a
salitres cujos títulos variam de 55.7 a 700. (1)

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>Salitre dissolvido em 100 partes d'água</th>
<th>Salitre purificado em 100 partes de salitre bruto</th>
<th>Temperatura</th>
<th>Salitre dissolvido em 100 partes d'água</th>
<th>Salitre purificado em 100 partes de salitre bruto</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,00 R</td>
<td>23,47</td>
<td>57,7</td>
<td>14,25 R</td>
<td>50,00</td>
<td>75,0</td>
</tr>
<tr>
<td>8,25</td>
<td>23,50</td>
<td>56,5</td>
<td>14,30</td>
<td>50,00</td>
<td>75,0</td>
</tr>
<tr>
<td>8,50</td>
<td>22,80</td>
<td>57,0</td>
<td>14,35</td>
<td>51,00</td>
<td>77,7</td>
</tr>
<tr>
<td>8,75</td>
<td>22,95</td>
<td>57,7</td>
<td>14,50</td>
<td>51,00</td>
<td>78,8</td>
</tr>
<tr>
<td>9,00</td>
<td>23,08</td>
<td>57,7</td>
<td>14,65</td>
<td>51,00</td>
<td>79,6</td>
</tr>
<tr>
<td>9,25</td>
<td>23,64</td>
<td>59,4</td>
<td>15,00</td>
<td>51,00</td>
<td>79,6</td>
</tr>
<tr>
<td>9,50</td>
<td>23,92</td>
<td>59,8</td>
<td>15,15</td>
<td>51,00</td>
<td>79,6</td>
</tr>
<tr>
<td>9,75</td>
<td>24,21</td>
<td>60,5</td>
<td>15,20</td>
<td>51,00</td>
<td>79,6</td>
</tr>
<tr>
<td>10,00</td>
<td>24,51</td>
<td>61,3</td>
<td>16,00</td>
<td>51,00</td>
<td>81,5</td>
</tr>
<tr>
<td>10,25</td>
<td>24,81</td>
<td>62,0</td>
<td>16,15</td>
<td>52,00</td>
<td>83,4</td>
</tr>
<tr>
<td>10,50</td>
<td>25,12</td>
<td>62,8</td>
<td>16,25</td>
<td>53,00</td>
<td>83,4</td>
</tr>
<tr>
<td>10,75</td>
<td>25,41</td>
<td>63,5</td>
<td>16,35</td>
<td>54,00</td>
<td>85,4</td>
</tr>
<tr>
<td>11,00</td>
<td>25,71</td>
<td>64,5</td>
<td>16,50</td>
<td>55,00</td>
<td>87,4</td>
</tr>
<tr>
<td>11,25</td>
<td>26,03</td>
<td>65,0</td>
<td>16,65</td>
<td>56,00</td>
<td>89,3</td>
</tr>
<tr>
<td>11,50</td>
<td>26,32</td>
<td>65,8</td>
<td>17,00</td>
<td>57,00</td>
<td>91,7</td>
</tr>
<tr>
<td>11,75</td>
<td>26,64</td>
<td>66,6</td>
<td>17,05</td>
<td>58,00</td>
<td>93,6</td>
</tr>
<tr>
<td>12,00</td>
<td>26,96</td>
<td>67,4</td>
<td>17,25</td>
<td>59,00</td>
<td>95,6</td>
</tr>
<tr>
<td>12,25</td>
<td>27,28</td>
<td>68,2</td>
<td>17,50</td>
<td>60,00</td>
<td>97,6</td>
</tr>
<tr>
<td>12,50</td>
<td>27,81</td>
<td>68,8</td>
<td>17,75</td>
<td>61,00</td>
<td>99,8</td>
</tr>
<tr>
<td>12,75</td>
<td>28,14</td>
<td>69,0</td>
<td>18,00</td>
<td>62,00</td>
<td>100,00</td>
</tr>
<tr>
<td>13,00</td>
<td>28,27</td>
<td>69,7</td>
<td>18,25</td>
<td>63,00</td>
<td>100,00</td>
</tr>
<tr>
<td>13,25</td>
<td>28,61</td>
<td>71,5</td>
<td>18,50</td>
<td>64,00</td>
<td>100,00</td>
</tr>
<tr>
<td>13,50</td>
<td>28,95</td>
<td>72,4</td>
<td>18,75</td>
<td>65,00</td>
<td>100,00</td>
</tr>
<tr>
<td>13,75</td>
<td>29,30</td>
<td>73,2</td>
<td>19,00</td>
<td>66,00</td>
<td>100,00</td>
</tr>
<tr>
<td>14,00</td>
<td>29,65</td>
<td>74,4</td>
<td>19,25</td>
<td>67,00</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Se a temperatura da água baixar muito antes da dissolução completa do salitri,
basta mergulhar o corpo de ensaio em água quente; proceder-se do mesmo
modo caso a precipitação dos primeiros cristais tenha passado desapercibida.

(1) Entre nós o ensaio acha-se regulamentado do modo seguinte:

Toma-se uma moção cheia de salitre de cada saca, deitá-se n’um bal.
Inversamente, se, no ensaio de um salitre muito pobre, a temperatura não houver sido suficientemente, como se pode também acontecer nas estações calmas e mornas, se estourar o coelho em água fria. Se, por acaso, succedesse ter-se analisado um salitre, cuja quebra fosse superior a 45% não poderíamos servir-nos da tabela de Yeuss, senão adicionando ao líquido uma determinada quantidades de salitre puro, de que se faria a sedução depois do ensaio. Por exemplo tomávamos 80 partes de tal salitre pobre, misturávamos bem intimamente com 20 partes de salitre puro, e tomávamos 40 partes. Dissolvíamos-as em 100 partes d’água. Observávamos a temperatura a que se secauham os primeiros cristais e adicionavamos o título dos dois salitres. Sugeríamos que a temperatura fosse 17,75, o título da mistura seria 60,5% e portanto o salitre que se pretendeu ensaiar 40,5%.

Como o rigor dos resultados obtidos por este método, se segue da exata determinação dos pesos d’água e de salitre, bem como da temperatura, é evidente que se deve operar sobre o salitre perfeitamente seco, sem esta precaução haveria um excesso d’água, que dissolveria uma quantidade de salitre correspondente à sua temperatura e ao seu peso, e o resultado do ensaio não seria exacto. Sugeríamos que tinhamos um salitre cuja cristalização começasse a 10°, o seu título seria 89,5%. Se este salitre contivesse umidade, por exemplo 2,5%, succedia que aquela temperatura os 2,5% d’água dissolviam 0,38 partes de salitre se que o ensaio não dava conta, e o verdadeiro título do salitre seria 92,38%.

D’aqui resulta a necessidade de não empregar no ensaio senão o salitre com...
plectamente seco. Este processo de encaixe não é isento de defeitos, porque, partindo da hipótese de que nem os cloratos nem os outros sais modificam o ponto de saturação da dissolução do salitre. A hipótese não é verdadeira: os sais que têm um elemento comum com o salitre contrariam a dissolução; pelo contrário, o clorato de sódio favorece-a. Segundo Longchamp, 100°/1,13, uma dissolução saturada a 18°, contendo 21,63° de salitre pode dissolver ainda mais 0,44° por uma adição de 5° de sal marinho, 4,46° se adicionarmos 10° de sal marinho e finalmente 3°22 se elevarmos a quantidade de sal a 26,85°. Esta circunstância tem na prática pouca importância porque os salitres, em geral, apresentam-se com pequenas quebras e pode até certo ponto a presença do clorato de potássio contrabalançar o efeito do clorato de sódio. Pois julga o processo de Steuss muito aceitável logo que se opere sobre proporção de salitre e água rigorosamente exactas. Recomenda que a operação seja feita do modo seguinte: Deita-se o salitre pesado, depois de forem queimados e seco, num vaso fervente, junta-se lhe a quantidade d’água prescrita e mergulhase o termômetro na dissolução, aquece-se em banho mário até 45 ou 50° e substituindo a água que se evapora; filtra-se esta dissolução para que os corpos in solúveis, areia e outras impurezas, não contrariem a precipitação dos cristais, e servimos para o ensaio da primeira metade do líquido filtrado.

Processo de Gay-Lussac. - Por este processo se ose-se alcalimetricamente o acido nitrico depois de o ter transformado em acido carbonico.

Para isso pesam-se rigorosamente 4,507° de salitre que se pretende analisar e misturam-se bem com 1/2 de seu peso de carvão e 4 partes de sal marinho descongelado. Deita-se depois a mistura, por pequenas porções, num caldeirão, e, quando a massa salmarca estiver fria, dissolve-se em água destilada; filtra-se e juntam-se algumas gotas de tintura de tournesol. Com um licor normal, que se prepara diluindo 100° de acido sulfúrico anhydrico em 1000° de água destilada, enche-se uma gaiola graduada e junta-se à solução salina por pequenas porções até que o líquido tome a cor vermelha, resistente. O número de divisões da gaiola, que representa a quantidade de licor
normal, com um 5% ou um 15% de nitrogênio em relação à quantidade de salitre puro. Sugestões que se consumiram 40% do licor.

Será:

\[
\begin{align*}
588.93 + 1263.93 - 40^\circ \times \epsilon = 35.84 \text{ logo a quebra deste salitre seria } \frac{588.93 - 1263.93 - 40^\circ \times \epsilon}{100 - 35.84} = 14.16
\end{align*}
\]

Este processo tem o defeito de dissolver todos os nitratos sem distinguir especialmente o de potássio.

Processo de Belonese. Neste processo reduz-se o ácido nítrico por um peso determinado de protocloro de ferro em presença do ácido cloro-hídrico e dessa direção pelo permanganato de potássio e protocloro não se descompondo.

A reação que se dá é a seguinte:

\[
6 \text{FeCl}_3 + \text{KOH}, \text{Al}_2\text{O}_3 + 4 \text{HCl} = 3 \text{FeCl}_4^- + \text{KCl} + 4 \text{H}_2\text{O} + \text{Al}_2\text{O}_3
\]

Para fazer o ensaio juntam-se 2º de giro de ferro e dissolvem-se em 100º3 de ácido cloro-hídrico concentrado, empregando para isso um balão de 150º fechado por uma rolinha de cortiça atravessada por um tubo de vidro azulado na ponta.

Logo que a dissolução está completa juntam-se-lhe 1º216 de salitre que se pretende analisar, fecha-se o novo balão e leva-se à ebulição. Quando o líquido tiver tomado uma cor amarelo clara, o que sucede depois de 5 ou 6 minutos, vaza-se para um outro balão maior, juntando-lhe as águas de lavagem, e perfeita com água destilada o volume de um litro.

Depois com uma gálveta juntam-se, gota a gota uma solução graduada de permanganato de potássio, agitando continuamente o líquido, até que uma gota de permanganato lhe comuniquem uma cor rosada.

A quantidade de permanganato que se empregou indica a porção de ferro que se salitre não passa ao máximo; se subtrairmos este ferro das 2º previsivamente empregado, deduz-se facilmente o título de salitre bruto, atendendo que 2º de ferro correspondem a 1º216 de salitre puro.

Prepara-se a solução do permanganato de potássio dissolvendo em água destilada e determinando-lhe o título ou graduação do modo seguinte:

Para 1º de giro de ferro, dissolve-se em 20º de ácido cloro-hídrico concentrado.
do, empregando o balão numido de rothia e tubo semi-dro, como acima dissemos; e logo que a dissolução estiver completa, vaza-se para outro balão e perfaz-se com água distillada o volume de 1 litro. Enche-se a galheta da solução do per-
manganato e junta-se gatta à gatta a solução do ferro até se manifester a cor
rosada; e de então a graduada da galheta: o numero de centímetros cúbicos de
solução gasta em ferro passar ao maximo a gramma de ferro que empre-
gamos indica o título do per-manganato. Suponhamos 50º.

Figurando um exemplo. Dissolvemos 2º de ferro em 100º de ácido clorh-
drico e juntamos-lhe 1,216 litros salitre que pretendemos analisar; pois
samos a solução para outro balão de 1/2 litro de capacidade e perfazemos com
água distillada o volume de 1 litro. Enchemos a galheta da solução gra-
duada de per-manganato e juntamos gatta à gatta ao liquido ferroso
até se dar a coloração rosada. Suponhamos nos que se consmivram 5º de
per-manganato, teremos: 3º: 3º: 5º; e x = 0,1666 quantidade de
ferro que passou ao maximo à custa do per-manganato; logo

2º - 0,1666 = 3º,8334 representará a quantidade de ferro que passou ao
maximo à custa do salitre que se quer ensaiar. Portanto

2º: 1,216: 3º,8334: y

y = 3º,1147 salitre juro con-
tido em 1,216 do salitre bruto. Para achar a expressão centesimal teremos
1,216: 3,1147: 100: x

x = 91,66 A diferença
para 100 isto é, 8,34 representa a quebra do salitre devida a saes e estoconhos.

Este processo, que demorando muito tempo, não dá resultados absolutamen-
 te rigorosos. O ferro nunca é absolutamente puro, contém sempre carvão em
proporção variáveis, que podem dar um erro de 0,5% na determinação do títu-
lo do salitre. Se o gosto é muito vivo, pode acontecer que uma parte do ácido ni-
trico se escape antes de ter exercido a sua ação. Se o biouride de arséniada for
completamente expulsio do seio do liquido, o que sucede nas Dissoluções muito
diluidas, transforma-se depois em ácido arsênico e a quantidade de per-
manganato reduzido será superior à que devia corresponder à passagem do fer-
ro ao maximo.
Noa determinação do título do permanganato pelo processo que nós indicamos, ao lado da reação principal:

$$10\text{FeCl}_3 + \text{KOMn}_7\text{O}_7 + 8\text{HCl} = 5\text{FeCl}_2 + \text{KCl} + 2\text{MnCl}_2 + 8\text{H}_2\text{O}$$

dá-se sempre a reação acessória:

$$\text{KOMn}_7\text{O}_7 + 8\text{HCl} = \text{KCl} + 2\text{MnCl}_2 + 8\text{H}_2\text{O} + 5\text{Cl}$$

e m que se obtém choro livre que desaparece em parte antes de actuar sobre o ferro, ficando perdida a ação oxigênante da porção correspondente do permanganato.

Fresenius aconselha determinar o título do permanganato empregando o ferro dissolvido no acido sulfurico diluido. Faça-se 1/4 de litro com o liquido a ensaiar contendo o ferro no estado de protóxido, junte-se a 50º destê liquido ferroso um litro d'água, fortemente acidulada com acido sulfurico, e determine-se então o título do permanganato; juntam-se de novo 50º do licor ferroso e far-se outra determinação, e assim sucessivamente até quarta operação. As duas últimas que são concordantes são com muito rigor o título do permanganato.

Processo de Schloesing. Este processo se funda-se na mesma reação que o de Bolusse, mas em lugar de se determinar o protóxido de ferro no atacão, mede-se directamente o bisoxido de aroten produzido. Feita a reação e recolhido o gas febaiso d'água, far-se a leitura do volume numa ou duas horas depois. Para evitar as correcções de pressão e temperatura que seria indispensável fazer relativamente ao volume do bisoxido de aroten, opera-se simultaneamente sobre duas quantidades iguais de salitre bruto e de salitre refinado, e a relação dos dois volumes obtidos representa a quantidade de salitre jauro contida em 500 partes do salitre bruto submetido ao ensaio.

O aparelho compõe-se de um balão A, Fig. 1, de 100º, fechado por uma rolha atravessada por dois tubos L e C, um de carga e outro para saída do gas; o primeiro é um tubo capilar de vidro que desce até ao fundo do balão, e na extremidade superior está ligado a um pequeno jarul de vidro por um tubo curto de cauteloso
que pode fechar-se com uma pinça; o segundo que é o tubo de saída do gar, fi-
za-se com um outro tubo de vidro e mais fino, de 0,30 de comprimento que se
ve de refrigerante mergulhando num tubo com água, onde está, colocada
uma campanula graduada \(\$ \). Para fazer o ensaio fixa-se no balão, com
alguns grãos de porcelana a dissolução de ferro clorhídrico de ferro em quanti-
de suficiente, para um certo número de operações, \(1/3 \) de ferro, por exemplo,
dissolvido a quente em 40 ou 50° de acido clorhídrico concentrado; serve-se
para expelir o ar do balão. Durante a ebulição, enche-se o fumil de acido
clorhídrico e seixa-se penetrar no tubo capilar, abrindo a pinça; depois
fecha-se esta. As bolhas d’ar evoluem-se, primeiro em grande numero depo-
is vão sucessivamente diminuindo até ao momento em que o tubo horizo-
tal é ocupado por uma columna líquida que oscilla, mas não se divide
mais. Coloca-se então a campanula cheia d’água sobre a pinça e proce-
de-se à operação. A campanula tem o volume de 100°. Os pressos correspon-
tentes de nitrato de potassa e nitrato de soda puros serião, 0,433 e 0,364, pa-
ra dar o volume de 110° de bióxido de arrote, a 20° C.

Opera-se portanto sobre 0,400 de salitre e 0,300 de nitrato de soda. Para
isso basta dissolver 80 grammas de salitre que se pretende ensaiar em
1000° de água distillada e tomar desta solução 5° que se fixam no fumil, abre-
se então a pinça por duas ou três vezes para o líquido penetrar no balão e
láve-se o fumil com a quantidade de acido clorhídrico necessária para man-
ter no balão o volume do líquido primitivo.

O bióxido de arrote desenvolve-se, e tomamos nota do volume \(V \) deste gar re-
chado na campanula.

Procede-se do mesmo modo com um salitre refino e tomamos nota do
volume do gar joradurido, \(V' \); teremos:

\[
\frac{80 \text{ re}}{V'} = \frac{80 \text{ re}}{V} \]

sendo \(\text{re} \) o título do salitre bruto. Se o sali-
tre jor muito sobre o volume \(V \) será muito pequeno e difícil de apreciar; opera-
-se então sobre 10° ou 15° do líquido e toma-se \(\frac{1}{2} \) ou \(\frac{1}{3} \) da relação dos volumes.
Este processo muito razoado e verdadeiramente industrial dá a quantidade de
ácido nitrico com diferença de 0,5%. O que sucede, porém, é que havendo nitrito de soda não podemos especificadamente conhecer o nitrito de potassa.

Se quisessemos aplicar este processo para determinar o título do nitrito de soda em vez de 80 grammas tornamos 60.

Regulação do salitre

Se convenha, fabrica-se polvora o empregando dos seus componentes, num grande estado de pureza, está claro que, contendo sempre o salitre bruto cloro-etas e outros sais mais ou menos deliquescentes, é necessário separar os destes corpos estranhos por meio da regulação.

O processo que ordinariamente se emprega devido, salvas algumas modificações a Bécanne e Lavojier, permite reduzir muito as impurezas do salitre, de \(\frac{1}{5000} \) até \(\frac{1}{15000} \), juntando, portanto, a eficácia e facilidade das manipulações.

Princípios fundamentais do processo. Funda-se 1.º no gran de solubilidade do salitre na agua, solubilidade crescente com a elevação da temperatura, em quanto que os cloro-etas de soda e potassio, são, quasi, tão solúveis a quente como a frio; 2.º em que uma dissolução saturada de salitre-furo pode dissolver, mantidas certas condições, cloro-etas e ainda outros sais, mas não dissolve mais salitre.

As operações que constituem a regulação do salitre são duas, cozedura e rega.

Cozedura. É feita em caldeiras de cobre, de forma conica, terminadas no junco por uma calotte esférica. Em geral estas caldeiras têm de capacidade de 10 hecatómetros. Sto intuito de aproveitar o calorico perdido têm se dado as caldeiras a disposição representada na figura 2; onde uma segunda caldeira, de grande superfície e peneira forjada de, serve para a concentração das aguas.

Cada caldeira carrega-se com 1500 a 1600 sacas.
litre bruto e 500 g de água, acende-se-lhe o fogo à tarde, isto é, na véspera do Dia em que deve fazer-se, a cisterna tendo o cuidado de deixar um lume brando, demorando que durante a noite o salitre se vá dissolvendo.

Na manhã seguinte abre-se os registos da jornalha, activando-se o fogo e com uma esponjadeira de cobre agita-se o liquido para completar a dissolução.

Os espumos que se produzem à superfície do liquido vão sendo tiradas com a esponjadeira e deixam-se n'um balde que se coloca junto à borda da caldeira. Para purificar completamente o liquido de todas as impurezas que o impunham, dão-se-lhe três ou quatro colaborações tendo para isso preparado préviamente uma dissolução de 400 grammas de colo forte com 63 g de água. As colaborações faram-se de espaço a espaço, empregando-se cada vez 17 g de água de colo.

Respeita-se esta operação até que o liquido se apresente completamente limpo e não se produzam mais espumos. Em geral, depois da terceira colaboração tem-se conseguido este resultado.

Antes de aplicar a colaboração feita-se no caldeira uma porção de água fria para substituir a que se perdeu pela evolubio e ao mesmo tempo moderar esta.

Quando o liquido está perfeitamente limpo, fecham-se os registos da jornalha e deixam-se em repouso até ao Dia imediato em que todo o liquido se secanta, tendo o cuidado de o não agitar muito, para não perturbar os depósitos devoluos a substâncias terrosas insolúveis e outras que se tenham formado no fundo da caldeira onde devem ficar.

Convenha notar que a temperatura do liquido no momento da secantação deve ser de 90 a 100 °C, segundo a estação, e deve ser usada numa vazometro de Bechamp 50 a 60 °C, conforme já maior ou menor a quebra do salitre, devida a saes estranhos.

O liquido secantado é recebido em dois cristallizadores de cobre de forma troncoconica, tendo cada um de capacidade 9 a 10 hectolitros.

Juntando cada cristallizador está um operario munido dumna esponjadeira com que agita o liquido secantado para auxiliar o resfriamento e perturbar a formação de grandes cristalos.

A proporção que o liquido resfria, vai branqueando, devido isto à formação
Se pequenos cristais que se acham no seu seio.

O operário tira-os então com a esponjadeira e esfita-os n'um taboleiro de madeira, colocado com certa inclinação na borda do cristallizador onde escorrem logo grande parte das águas maes. Junto a cada taboleiro acaba-se também um operário que vae mexendo e amontoando o salitre para facilitar o escorregamento das águas, servindo-se para esta operação d'uma colher de pedreiro.

Estes mesmos operários, transportam em balde, para as celhas de rega o salitre que sae daمعدura depois de bem escorrido nos taboleiros.

As águas dos cristallizadores continuam a ser agitadas até que não dejessem mais salitre, o que sucede logo que a temperatura desce a 30° C.

Na primeira operação separam-se de salitre as impurezas e parte dos chelretos porque estão, quase tão solúveis a quente como a grão, quando aquelle se dejea pela perturbação da cristallização, ficam ainda dissolvidos nas águas maes.

A fim de desembargar o salitre de alguns saes estranhos com que está um, da evolvido, empregam-se então as regas com água saturada.

Regas. Os celhas em que se rega o salitre são de madeira e têm de capaceio de 5 hecatolitros, proximamente.

Ficam dispostas geralmente, em dois renques um de cada lado da oficina e assentem sobre um mastigo de alvenaria, ao longo do qual corre um cano de pedra, que condur as águas que escorrem das celhas, para jias colocadas nas suas extremidades do cano. A fig. 3 dá ideia desta disposição.

Depois de bem cheias as celhas seixam-se escorrer por espaço de duas horas, em seguida tapa-se lhes o buraco da saída das águas com um tacho de madeira e procede-se à rega com água saturada.

Para saturar a agua dissolve-se 27° de salitre refinado em 15 hecatolitros de água, que se fezca jerver gradualmente até marcar no areômetro de Beau-mé 20 a 28° conforme a estação. A água depois de saturada passa-se por
um coador de lona e deixar-se uma respostas para ser enfileirado depois de girar. Em cada roda enfileiram-se 36 a 40* de água saturada, que se fica lentamente sobre o salitre, com um vazamento, e se conserva-se dentro da celha por espaço de 3 horas. Fim de estar tempo, destapam-se as celhas e a água escorre; lavam-se de novo novamente, jorlando-as assim para a segunda roda. Toma-se outra nota, com o analisador de Beaumé, do peso do salitre, nas condições de temperatura e atmosfera, e verificam-se de novo quando a água da segunda roda sai das celhas, se acusa, em identidade de circunstâncias, o mesmo peso como que entraram.

Logo que está concentrado se fizer suspensão-se as rodas, as celhas ficam destapadas, conservando-se assim durante 8 dias a fim de salitre escorrer completamente.

Agua maio. Dá-se este nome às águas que resultam da escoadura do salitre, da preparação dos lamis, das regas das celhas e lavagem dos sucos estranhos.

Estas águas concentram-se ao seo, esponjando a caldeira e limparam-se de todas as impurezas que se produzem na superfície do líquido. A medida que estas águas vão concentrando juntam-se-lhes novas porções, até que, estando a caldeira quasi cheia, o líquido acusa no analisador de Beaumé 40 a 45°. Ao estar condicionado, o ligeiro poeira para um crystallizador em jorlando-se um filtro, que retém todos os sal marinhas já crystallizado pela concentração das águas. Se as águas estão muito carregadas de saes, secam-se para outros crystallizadores, e que na superfície do líquido aparecem os primeiros cristais de salitre. Nas paredes do primer crystalizador fica adherente uma grande quantidade de sal, que juntamente com o que está no coador contém ainda 10 a 12% de salitre, que se lhe extrai depois por novas lavagens a quente. Nos segundo crystalizador para onde se decontam o líquido, formam-se logo grandes cristais de salitre bruto.

Quando o salitre tem uma quebra superior a 15%, sofre uma lavagem
previa em água ordinária antes de ser rejinao. Procede-se do mesmo modo
com os cristais provenientes das águas maõ, quando estas são muito velhas
*e têm sido concentradas já um grande número de vezes.

Lavagem dos saoes. Todo o sal que representa as impuríssimas do salitre é
lavado numas caldeiras para lhe tirar as partes aproveitáveis. Para isso
introduzem-se na caldeira 900 a 1000* de sal e acaba-se de echar em água.
Acende-se o fume, e com uma espátula de madeira agita-se o liquido para
completar a dissolução; deixando-se jerver até que no areómetro de Beau
mea marque 33 a 36° de concentração. Em seguida passa-se o liquido para
uma cristallizador. A água da lavagem dos saoes entra-se bastân
tes vezes o chloroto de potassio que, facilmente, se separa por uma sim-
ple desantação.

Como o chloroto de sodio, que se acha envolvido com o chloroto de potassio
maõ é sensivelmente mais solúvel a quente do que a frio e como 100* de
água a 109° C dissolve 40* de chloroto de sodio em quente que, no mesmo
volume de agua e a mesma temperatura, se dissolve 60* de chloroto de po-
tassio, esta diferença de solubilidade permite separar os dois saoes. Para
isso basta deixar arrefecer até 35° aproximadamente dentro do cristallizador
as águas da lavagem dos saoes e desantar-as logo para outro. Sob as
forãedas do primeiro cristallizador depositem-se os cristais de chloroto
de potassio juntamente com algum chloroto de sodio. No segundo crys-
tallizador depoê-se muito chloroto de sodio, sem contudo se notar vesti-
gio algum de cristallização de salitre. Concentrando de novo estas águas,
consegue-se por meio de operações analógas separar todos os salitres que
elas contêm.

Lavagem das lamãs. Os excrementos, os cincharas e varreduras da ofífica,
restou das esséurias que fica sempre no fundo das caldeiras, consti-
tuem as lamãs, de que se obtém grande quantidade de salitre.

Dissolve-se, para isso em água quente, dentro de uma caldeira, agi-
tando bem o liquido para ejarar a dissolução. Logo que esta esteja com-
feita e que, pela concentração marquada 34 a 36° Beurnie, secanta-se pararum cristalizadores, e deita-se-lhe em cinco 0,250 de caá diluída em 5 litros d’água.

Nestas condições deixou-se esfriar todo o líquido, a cal despeita-se no fundo do cristalizador e arrasta consigo todos os corpos que estavam em suspensão. O líquido torna-se transparente tendo em seu seio magníficos cristais de salitre bruto. Decanta-se e submete-se depois a novas concentrações. Os cristais de salitre bruto seguem os processos da regulação. Os jás das lamas sofrem uma nova operação, mas então o líquido tira-se na concentração de 18 ou 20° Beurnie e finalmente se tãem-se numa câmara armada em filtro e rega-se com água quente, até que está quando se a célha acense azevias 1° no acometômetro. As lamas despoiam-se então.

Ensaios de salitre regiado. O salitre que nas câmaras sofreu as regas e que, segundo a fórmula dos operários, « deu pela saturação, é submetido ainda a um ensaio para se conhecer se está nos limites de tolerância, isto é, se contém azevias 1/3000 de chloretos. O ensaio é feito sobre 10 grammas de salitre regiado, compondo-se para isso um licor normal de nitratos de prata.

É necessário, portanto, para preparar o licor normal adquirir a relação entre os equivalentes.

Neste caso temos: \(\frac{1}{300} \times 10 = \mathrm{e} \) : \(\frac{\mathrm{NaCl}}{\mathrm{Ag}} \approx 0 \times 0^5 \) sendo \(\mathrm{e} \) a quantidade de nitratos de prata que se separarão e transformam os chloretos contidos nas 10 grammas de salitre regiado.

\[
\begin{align*}
\left(\frac{\mathrm{Ag}}{\mathrm{NaCl}} \right) & \approx 108 \\
\vdots \quad 3 \quad 570 \\
\left(\frac{\mathrm{Ag}}{\mathrm{Cl}} \right) & \approx 14 \\
0 & \quad 40
\end{align*}
\]

Substituindo estes valores temos \(\frac{1}{300} \approx 58,5 \times 370 \) \(\mathrm{e} = 0,00969 \).

Dissolvendo 0,00969 de nitratos de prata em 100° de água distilada fica corresponde a cada centímetro cubico 0,00969 de nitratos de prata, quantidade ne-
cessaria para transformar em cloro de prata todo o sal marinho contido nas 30 gramas de salitre regresso.

Pode preparar-se o licor normal tomado num peso qualquer de nitrito de prata expreso em grammas e dividir por 0,00969, o quociente da quantidade de água em que deve ser dissolvido.

Para fazer a análise procede-se do modo seguinte. Pesam-se 30 gramas do salitre que se pretende ensaiar, bem seco, dissolvem-se em água destilada morna, junta-se-lhe 1 cc de licor normal, e filtra-se, dividindo depois o licido em duas porções. Têm-se selhos delas algumas gotas de licor normal, se o licido se conserva limpo e indica que o salitre não contém mais de \(\frac{1}{3000} \) de cloro; se a outra porção do licido delas algumas gotas tem solução de sal marinho, se turva e porque o salitre tem menos de \(\frac{1}{3000} \) de cloro, no caso contrário indica adiar-se nes limites de tolerância.

Operações complementares da regulação do salitre. Verificada a pureza do salitre e seco a lume brando, em tachos de cobre, que têm 3,5 de diâmetro por 0,35 de profundidade. Corre os tachos com 30 kg de salitre, mece-se constantemente com uma espatula de madeira até à perfeita secura.

Depois de seco passa-se por uma jorceira para se e acondicionar-se em barris de madeira.

Em Inglaterra o salitre que se prepara em Whitham-Abbay é sumido em jorce, depois de refinado, para evitar que absorva humidade do ar.

Na França, na Bélgica e na indústria particular inglesa empregam o salitre refinado no fabrico da pólvora, nas mesmas condições em que nós o empregamos. O processo de regulação é o mesmo salvo alguns pequenos detalhes, que nada influem no resultado final da operação.
II.

Enxofre

Propriedades gerais. O enxofre é um metalóide de uma cor amarela característica, insolúvel na água, pouco solúvel no álcool, éter, benzina, óleos gordos e essenciais.

O dissolvente por excelência, do enxofre é o sulfureto de carbono. A densidade do enxofre é de 2,087.

Exposto ao calor oferecem os fenômenos muito extraordinários. Aquecidos numa cápsula de esparta e estando a 143° começa a fundir, torna-se fluido como a cera; o líquido é transparente e de cor de cítrico. Continuando a ação do calor, o líquido muda de cor e natureza, torna-se escuro, avermelhado, perde a fluididez, ficando espesso.

Este estado aumenta ainda com a temperatura, tornando-se a cor tão vermelha e a consistência tão pastosa que podemos Mejorar em longos fios excessivamente ginos. Se continuarmos a ação do calor, quando esta atinge 250° a massa inflama-se e arde com uma chama azul esgotando vaopores brancos e excessivamente alicientes.

Esta combustão não é outra cousa senão a combinação do enxofre com o oxigenio do ar, auxiliada pela temperatura, combustão que se gera em luz dando lugar à formação do acido sulfuroso.

Se, pelo contrario, o enxofre gá ser aquecido num vaso fechado, num reator por exemplo, não se inflama. Quando nestas circunstancias a temperatura se tém elevado a 400° entra em ebolizio e produz vaopores amarellados que, pelo resfriamento, se condensao em joó impalpavel conhecido pelo nome de flor de enxofre.

O enxofre encontra-se no commercio no estado de flor de enxofre, cunados e praes.

O enxofre em carvões é o que ordinariamente se emprega no fabrico da pólvora, verificando sempre formato de enxofre e seu estado de pureza.

O enxofre em flor contém sempre acido sulfuroso e precisaria de ser
próprio dele por lavagens repetidas.

Extracção do enxofre. Em nas minas de Biritá na Toscana, de Sulfata-
ra em Hidalgos, e, principalmente nas terras volcânicas da Sicília, que o en-
oxofre aparece em maior quantidade e onde quasi que se abastecem os
mercados da Europa.

Depois de se ter extralhido o minério obtém-se o enxofre por fusão ou distil-
lação.

1º Processo. Quando o minério é muito rico perto-se em uma caldeira de
ferro fundido B Fig. 4, aquecida pela fornêlha A.

Mette-se bem a massa com uma haste de ferro, depois
is deixar-se descançar, mantendo a temperatura a 150º,
foi uma que é indispensável para evitar que a
massa se inflame, todas as vezes que a operação
se gar as ar livre. Decanta-se então com uma co-
hê C o enxofre fundido, que sobrenda às escovas e enche-se o molde de
ferro d'originalmente molhado com água. Logo que o enxofre solidifica-
tira-se do molde e quebra-se o pouco de enxofre em pedaços, que se acendeu-
ham em barricas para serem entregues ao comércio. Os resíduos ter-
ros que se tiram do fundo da caldeira, podem, conforme as circunstâncias
locais ou comerciais, ser regitados ou tratados por algum dos pro-
cessos seguintes.

2º Processo. Emprega-se n’estes uma espécie de forno Fig. 5, de açao con-
tínua feito de tijolo ou pedra dura. O forno des-
se forno, acende-se o enxofre imundo que serve de
combustível, e deixam-se-lhe por cima fragmentos
de minério que ardem à superfície e deixam cor-
rer o enxofre fundido pelo calor da combustão. Fu-
ros 5, 5, 5... praticados nas paredes do forno fornecem
o ar necessário a esta combustão superficial, o en-
oxofre fundido desce para o fundo do forno e vai então pelo forno 3, sendo

recebido em moldes de madeira ou de folha de ferro onde se solidifica.

3º Processo. Este processo permite tratar os minérios pobres que contêm 8% de enxofre. Consiste numa distillação grosseira, operada em cadinhos A e B, colocados em número de 12 ou 15 num jarrão numa jornada em forma de abóbada. Entre as duas ordens de cadinhos, existe um escoço livre onde se queima o combustível. Cada cadinho recebe, aproximadamente 21 de matéria. Um vaso de barro, batido com argila, vedado a entrada de ar nos cadinhos. Um tubo põe em comunicação pelo par te inferior os cadinhos A com os cadinhos B, que recebem e condensam os vapores de enxofre. O produto líquido escorre por um orifício C para um recipiente onde se solidifica.

É preciso, nesta operação, regular o jogo de modo que a ebulição da matéria quente não seja muito viva, porque pode arrastar com o produto substâncias estranhas que vão inquinando o enxofre.

A qualidade do enxofre obtido por este processo é analógica aos outros de que falamos. Encontra-se no comércio com a designação de enxofre bruto, contendo sempre matérias estranhas.

No comércio considera-se de primeira qualidade o enxofre que contém 4% de matérias estranhas; de segunda o que contém 2 ou 3%; e de terceira o que contém 5%.

Não está importante, este enxofre, em condições de ser empregado na polvora sem previamente ser resina do.

Rezinação de enxofre. Muitos aparelhos têm sido propostos com o fim de facilitar esta operação, encomendado para os operários, pelos gares que neles se desenvolvem, e também para evitar o grande consumo de combustível e as perdas de enxofre.
Em Marselha, onde se encontram 18 estabelecimentos destinados à produção do enxofre refinado, nas oficinas de M. Michel, funciona o aparelho da Fig. 7, inventado por M. Lamy.

Composta-se de dois cilindros de ferro fundido, B, tem. do 1,5 de comprimento e 0,50 de diâmetro, fechados n’uma das extremidades por um obturador móvel. Cada cilindro é formado de duas seções: uma recta, outra em forma de cello de cisne.

A parte recta do cilindro é a que recebe a ação direta do fogo.

A chama e os gases da combustão servem também para aquecer a caldeira destinada a alimentar os cilindros. Esta caldeira tem 1 m de profundidade, por 1 m de diâmetro e 1 m de altura e de uma torneira. Os cilindros abrem n’uma camera G, podendo a abertura d’estes conservar-se ou não fechada por um registo, que se põe em movimento por meio d’uma haste articulada. A camera, solidamente construída, tem 50 m de capacidade.

N’uma das extremidades há uma porta para serviço, e na extremidade oposta existe um suporte que pode abrir-se ou fechar-se à vontade.

Este aparelho pode produzir enxofre em flor, ou enxofre em cunhas, vendo-se como se proceder à operação.

Enxofre em cunhas. Carrega-se cada um dos cilindros com 300 kg de enxofre bruto, o menos impuro possível, fecham-se e lutam-se os obturadores dos cilindros com argila, acende-se o fogo debaixo d’um dos cilindros, e quando a destilação, neste cilindro, está em meio, aquece-se um a outro.
A temperatura da fomilha faz-se retirar o enxofre com que se carrega também a caldeira, onde ele se fixa pela adesão das matérias pesadas, pela volatilização da água e separação dos corpos leves que sobem de baixo. Logo que a destilação está completa no primeiro cilindro, carrega-se de novo, com enxofre fundido que desce da caldeira. Por meio de um tubo que se adapta à torneira e se joga em comunicação com a região que existe no obturador do cilindro. Cheio o cilindro tira-se o tubo e liga-se o orifício ao obturador com um saco de barro lutedo com argila.

Durante a operação, uma válvula que existe na parte superior da câmera, mantida em equilíbrio por um contra-peso, permite ao ar, bruscamente dilatado, sair sem grande esforço e sem comprometer, por consequência, a se- lidir das janelas, nem dar lugar a sinistros.

Cada destilação dura 8 horas; carrega-se alternativamente cada um dos cilindros de 4 em 4 horas e as 6 operações nas 24 horas representam 1800 litros de enxofre refinado. A temperatura eleva-se então na câmera acima de 110; temperatura a que o enxofre se conserva fluido. Quando o nível do lixo vê-se atingir 17 a 18 centímetros abre-se então o orifício de saída, regulando esta sem bisco que um operário possa encher com uma colher os moldes de madeira onde o enxofre se solidifica. Este é o enxofre em cantos.

O enxofre. O mesmo açigarro pode servir para a preparação do enxofre em gilhas; mas, nesse caso, é necessário evitar que a temperatura na câmera se eleve a 110° porque então a gilh se enxofre se liquifia. Para que não se este caso reduza o número de destilações a duas, sendo apenas a carga, em cada cilindro 150 litros. Quando a gilh de enxofre se tem depositado, o operário entra na câmera e tira ela com uma jarda para a acondicionar em barris. O enxofre obtido por este processo fica num grande estado de bisexualidade, mas é menos duro que o enxofre em cantos; porque contém somente matérias estranhas, trazas de humidez e ácido sulfúrico.

Por estas razões emprega-se sempre no fabrico da pólvora de guerra o enxofre em cantos.
O aparelho tiram-se com muita facilidade os resíduos da operação; mas infelizmente ficam ainda muito impregnados de inoxíbre que escapa à distilção. Além disso são também perdidas pelas juntas da tampa dos cilindros.

Aparelho de Court e Désjardins. No aparelho representado na fig. 8, acham-se mediados os inconvenientes do aparelho de Lamy.

A caldeira de alimentação A, fechada pelo tacho B, comunica com o tubo A por onde o inoxíbre passa para a retorta B juntamente com os resíduos. A retorta é de ferro fundido, de forma lenticular com um solo 5° 5' fazendo corpo com a retorta, sem junta de unção.

Um tubo de ferro ou chumbo D, estabelece a comunicação com a câmara e é munido dumas válvulas E. A câmara da fornilha C aquece por meio a face superior da retorta em seguida a inferior e passa depois a aquecer a caldeira de alimentação. Durante a operação a válvula E está aberta. Quando se quiser tirar os resíduos, fecha-se, tira-se a tampa oblíqua F e descarregam-se os resíduos líquidos que por meio do canal F caem no depósito G onde se deixam arrefecer.
A caldeira de alimentação carrega-se com 600 kg de eucôfre bruto cuja distilação dura 4 horas. Obtém-se em 24 horas de trabalho 3600 kg de eucôfre refinado. Do fim de 5 ou 6 dias vaza-se nos moldes e eucôfre líquido. Para obter a floc de eucôfre seve manter-se a câmara a uma temperatura baixa e para isso distilaram-se apenas 400 kg em 24 horas.

Dias fabrica 3ª Alemanha, onde se aproveitam os resíduos da distilação, emprega-se o aparelho representado na Fig. 9, que têm a vantagem de exigir muito pequeno espaço. A caldeira de distilação A está ligada ao condensador. Ser B por um tubo C.

A limpeza da caldeira faz-se pela porta D que fecha o canal E. A gorna está em F. A introdução do eucôfre e bruto faz-se pelo ganil D. Uma haste G permite manter sem furo livre a passagem do eucôfre. A condensação faz-se na caldeira B e o eucôfre fundido sai pela tubulação D para o recipiente G.

Noa fabrica da pólvora em Spandau, emprega-se o processo seguinte: Uma caldeira, solidamente assentou sobre um massão de alvenaria, é ali aquecida pela chamada de uma gorna. A caldeira recebe 75 kg de eucôfre bruto que se faz fundir lentamente. Logo que está bem líquido éitá-se em foros de ferro comum, de capacidade de 25 kg. Sobre o foro assenta uma grande berçã com uma tava que serve para filtrar o eucôfre. O eixão deu assim arrefecer o eucôfre colhido que, passando à varredura rhomboédrica, fica muito seiva.
Análise do enxofre

No enxofre, para o fabrico da pólvora, pesquisam-se os ácidos das materias terrosas e o arsénico.

Pesquisa dos ácidos. Tomam-se 4 gramas de enxofre finamente polvereado e sejam-se juntar, em 120° de água destilada, dentro de um balão de vidro que, durante a ebolização, se agita repetidas vezes. Seergulta-se depois no líquido um poço de arul de tournesol e se este se tornar vermelho é porque o enxofre contém ácidos.

Pesquisa das matérias terrosas. Tomam-se uma coluna de porcelana, introduzem-se-lhe 10 gramas de enxofre e sejam-se volatilizar à luz de uma lampada. Deixa-se depois arrefecer a coluna e pesa-se de novo; no caso de haver diferença de peso, essa representa a quantidade de matérias terrosas contidas na amostra do enxofre.

Pesquisa do arsénico. Uma densidade superior a 2,0876, bem como à cor muito alaranjada, denotam a presença do arsénico. Podemos, porém, pesquisar-lo do modo seguinte: Tomam-se 4 gramas de enxofre em 120° e misturam-se intimamente em 16 gramas de salitre também reduzido a 120°; projetam-se a mistura por pequenas porções num cachimbo ao rubro, em cuja lanceta se têm deixado uma pequena abertura; retira-se do grego e seixa-se arrefecer. Dissolve-se a massa salinas em água acidulada com ácido sulfúrico e leva-se à segurança até expulsar todo o ácido nitrico. Retoma-se depois grego, pela água acidulada com ácido sulfúrico.

Podemos nestas condições precipitar o arsénico pelo sulfúrico ou pelo nitrat de prata amoniacal que são precipitados característicos; ou empreender o ajuste de Warraske, que demarca os fados mais insignificantes de arsênio que possam existir na amostra do enxofre.

III

Carvão

Dos três elementos que entram na composição da pólvora, o carvão é aquele cujo fabrico oferece maiores dificuldades e exige mais cuidados, porque
o produto da carbonização varia com a temperatura, com a qualidade da madeira, e com a maior ou menor raphide da operação. O salitre e o enxofre podem obter-se chimicamente tanto, com o carvão, porém, não se aplica o mesmo, porque este é um composto de carbono, oxigênio, hidrogênio, ar e cinzas, variável com a espécie da madeira e com o processo de fabrico.

De 100 partes de madeira podemos obter 40, 35, 30, 25, 20 ou 15 partes de carvão de tipos completamente diferentes. Por isso nas fábricas de pólvora se estabelece um tipo de carvão, e, adoptado este, regulará-se a operação de modo que se obtenha sempre um mesmo produto. Na fábrica de Boareauna o carvão distillado dá rendimento de 90 a 92% da quantidade de madeira empregada.

O carvão destinado ao fabrico da pólvora deve inflamar-se facilmente, arder com raphide e não dar cinzas.

Estas três qualidades dependem das circunstâncias que já apontamos, isto é, da natureza da madeira e do processo da carbonização. Quanto maior for a riquera da madeira em celulose melhor será o carvão.

A casa da uma essência qualquer há maior quantidade de cinzas de que a fábrica da madeira; os troncos grossos têm também mais cinzas do que os ramos delgados. É por isso que se escolhe para o fabrico do carvão para a pólvora, madeira nova, molle e livre da casa.

Resulta das diferentes experiências, que é indispensável escolher entre os diferentes vegetais, mas ainda entre as diferentes partes duma determinada essência, as que mais convém para o fabrico do carvão para a pólvora.

Espécies de madeira empregada. Todos os fazeiros escolhem, tanto quanto possivel, para o fabrico do carvão para a pólvora as madeiras molles, o maior número de vezes madeiras brancas, podendo empregar-se as essências
seguintes:

Corylus avellana avellãra.
Salix alba .. salgueiro branco.
Salix atia-cinera salgueiro preto.
Salix viminalis vimeiro-do-norte.
Betula alba .. amêijo.
Populus alba .. chumbo branco.
Platanus hybridus plátano.
Rhamnus frangula amêijo-negro.
Rhamnus alaternus sanguinhe.
Plantago psyllium zaragatoa.
Jinus usitatissimum linho.
Cannabis sativa linho canamo.

Dentre estas variedades de espécies, adotam-se entre nós as seguintes:

O sanguinhe, salgueiro preto e salgueiro branco, e escolhem-se de preferência os pequenos ramos de 3 a 5 anos de idade e de 0,035 a 0,035 de diâmetro.

A escolha do corte da madeira não é também indiferente, porque as cinzas, sendo função da quantidade de sãos em dissolução na seiva, convém cortar a madeira na primavera, quando a seiva é ascendente e pouco concentrada, porque não sofrem ainda os fenômenos de elaboração nos órgãos respiratórios da planta e também porque é então muito fácil despojal-a da casca.

Recepção da madeira. A madeira recebe-se a peso e deve haver cuidado em não aceitar os geizes onde houver raizes ou madeira morta; as raízes gerarem muita cinza; a madeira morta dá poço carvaço. Como a madeira conserva a água com muita tenacidade, deve sempre no acto da recepção, deduzir-se o poço da água e dos atilhos dos geizes, calculado por uma ou muitas pesadas efectuadas sobre muitos geizes tomados ao acaso.

Para determinar a quantidade d'água, forma-se um molho de 20 tiras de uma ou duas varas de cada geize, aquece-se num cilindro de carboní-
sação até 320° aproximadamente e observa-se de tempos a tempos a diferença de peso até que duas pesadas consecutivas sejam concordantes. Obtém-se assim a quebra de peso devida à humidade.

O comprimento da madeira deve regular-se pelo dos cilindros de carbonização. Os alemanes exigem que a grosura não exceda 0,26. Os troncos grossos, isto é, que excedem um pouco os limites regulamentares, são fendidos antes de submetidos à carbonização.

Conservação da madeira: A madeira recentemente cortada tem quasi a mesma composição da celulose. Contém termos médios:

Carbureto	49,7% por cento
Hidrogênio	6,14
Oxigênio e arôma	43,42
Cinzas	3,07

A composição da celulose pura é a seguinte:

Carbureto	43,6% por cento
Hidrogênio	6,28
Oxigênio e arôma	50,07

Mas a madeira contém sempre quantidades de água muito variáveis. que podem elevar-se a 60% de que convém desembalar-las, tanto quanto possível por uma exposição prolongada ao ar livre, sem todavia perder a exposição alguma nos tecidos. Se expor mos a madeira ao ar livre, estabelece-se pouco a pouco o equilíbrio entre o seu estado higrométrico e o do meio ambiente.

Depois de 1 1/2 a 2 anos tem perdido toda a humidade que o ar lhe pode roubá-lo, mas retém ainda 12 a 15% d'água. Se a exposição vai além de dois anos, o carbureto é parcialmente queimado e a madeira transforma-se em humus. Este fenômeno pode ser-se mesmo no período 1/2 ano por uma exposição ao ar humido. Em Barcarena a madeira para o carvão é abrigada debaixo de telheiros onde o ar circula livremente. Os seixes inferiores são colocados sobre madeiros para evitar o contato do solo e sobre estes primeiros seixes formam-se as soildas. Este sistema é seguido.
em Dresde. Em França conservava-se a madeira ao ar livre durante um
inverno e um outono e depois é que se recolhia de baixos de heliheiros. A Inglaterre
conserva o mesmo sistema mas reduz um pouco a exposição ao ar de 30
anos que era antigamente a 3. Em Spanyol a exposição é de 2 a 3 anos mas conserva-se a madeira abrigada de baixos de arvores.

Como regularmos o rendimento em conserva em relação ao peso da madeira
empregada, convém que esta não tenha água.

Ação de calor sobre as matérias orgânicas. As madeiras são com
postos orgânicos, bastante complexos, não oferecendo aos agentes externos,
que tendem a imprimir-lhes modificações, senão resistências extremamente
graves; isto é, são corpos de uma fácil decomposição.

Além disso todas as combinações químicas, e principalmente os compostos
orgânicos não podem existir senão dentro de certos limites de temperatura,
esse extrems para as combinações simples mas muito próximos
para as combinações complexas.

A destruição dos corpos pelo calor é apenas a consequência de uma combi-
nação de elementos a uma série de outras combinações de ordem inferior,
causando-se resistir a temperatura em que o corpo se acha. Resulta, pois,
3. aqui, que a natureza dos produtos que se formam, é função do gran
de temperatura e os diferentes compostos variáveis em quantidade e qualidade,
de conforme a maior ou menor intensidade do calor.

Estes variações manifestam-se sobre tudo se o ar atmosférico inter-
vem durante a ação calorífica.

No este caso os compostos que se formam estão imediatamente em pre
sença do oxigénio, cujas afinidades são muito vivas, produzindo necessa-
riamente novas combinações. Como fenômeno acidental observava-se en-
tão a combustão. Quando, pelo contrário, a madeira se submette à ação
do calor fora do contacto do ar, experimenta modificações interessantes de
baixo do ponto de vista tecnológico, mas ainda n'este caso uma parte
da madeira se combusta. O fenômeno que a temperatura se eleva, —
equilíbrio químico das combinações porinitivas, restabelece pela sua instabili-
dade em presença de calor; os elementos voláteis, hidrogênio, oxigênio,
e até tendência a tomar a forma gaseosa e separam-se do carbone gico. Esta separação, porém, não se faz de um modo completo e absoluto porque
se acha combatida por afinidades químicas não menos energéticas. Uma par-
te do carbone unindo-se aos elementos voláteis, escapa-se com eles; inversa-
mente outra parte dos elementos voláteis se junta com o carbo-
ne gico, até que a temperatura atinja o limite de fusão. Este novo estado
de equilíbrio. Se o calor aumenta ainda, ha nova separação de compon-
tos e encontra-se um resíduo mais rico em carbone, mas sobre de princípios
voláteis e assim sucessivamente até que se chega a um resíduo que as tem-
peraturas ordinárias não podem descompor pela tenacidade que a matei-
ra oferece a desgastar-se de todos os vestígios de princípios voláteis.

Vê-se, pois, que os fenómenos da carbonização e o produto da operação
variam com a temperatura.

Existe demonstração também, por experiências repetidas, que a maior ou
menor rapidez da combustão, faz variar os produtos da carbonização, co-
mo se vê na tabela seguinte:

<table>
<thead>
<tr>
<th>Carbonização</th>
<th>mínimo</th>
<th>médio</th>
<th>máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>carvão</td>
<td>12,20</td>
<td>14,4</td>
<td>16,5</td>
</tr>
<tr>
<td>leste</td>
<td>24,6</td>
<td>25,6</td>
<td>27,7</td>
</tr>
</tbody>
</table>

O produto da carbonização pode ser ainda afectado, quando o acido carbo-
nico, que se produz, passa através da massa do carvão a uma alta tempe-
ratura, apondo-se de uma quantidade de carbone igual a que já tinha
para transformar-se em oxido de carbone.

Carbonização

Os métodos empregados no fabrico do carvão para a polvora são: a
carbonização em caldeiras e a distillação em cilindros.
Carbonização em caldeiras. As caldeiras são de ferro fundido, têm 1" de diâmetro em geral e 0,36 de profundidade.

São assentos sobre alvenaria de modo que a caldeira fica de nível com o solo. A tampa é de gelha de ferro e tem duas pequenas aberturas circulares destinadas à saída do jumao.

O processo pratica-se do seguinte modo:

A madeira é cortada em pedaços de 0,38 proximamente de comprimento. O operário excede no fundo da caldeira uma porção de agulheiros e por cima deixa-lhe uma pequena quantidade de madeira que deve ser carbonizada; logo que está se inflama, fica nova quantidade e assim sucessivamente, tendo o cuidado de seitar a madeira nos pontos onde a chama se manifesta com maior actividade. A chama não é outra coisa senão a combustão dos princípios voláteis da madeira; não convém dar-lhe tempo de atascar o carvão e se alimentar de custa d'elle.

O operário deve seitar a madeira na caldeira, com certa ordem e inteligência. Ficou ali com elle ao acaso, coloca-o com regularidade no mesmo sentido e chegando a nos pontos onde a chama se manifesta, por algum tempo até que a massa se cubra de uma pequena efluvencia branca; neste mesmo momento coloca a tampa na caldeira deixando abertos os agulheiros por onde continuam saindo torrentes de jumao. A comunicação com o ar exterior fica interceptada pela tampa e o carvão não pode consumir-se. O jumao que se escassa pelos agulheiros são as matérias voláteis gasificadas pela massa incandescente. E necessário lutar bem a tampa com argila, para evitar tudo o acesso d'air. Tschunse os agulheiros logo que o jumao tem cessado e deixe-se a madeira esfriar durante três dias.

Seria imprudente tirar o carvão antes de estar grio porque é susceptível de se inflamar espontaneamente. Depois é passado ao erros e escolhido.
O carvão fabricado em caldeiras é hoje exclusivamente consagrado a pó-
vera de minas.

Distillação em cilindros. Os sistemas de cilindros para distillação
do carvão podem classificarse em dois grupos - cilindros fixos e cilin-
dros moveis.

Cilindros fixos. Os cilindros podem ser de ferro fundido ou de folha de
ferro; os primeiros são de maior duração do que os segundos. Têm ge-
ralmente, 0,50 a 1,00 m de comprimento, 0,70 de diâmetro e 0,015 a 0,03 de es-
pressão, ficando encobertos pelas suas extremidades e um massa de
alumínio, onde recebem a acção do gás, como se vê na **Fig. 12**.

Dois cilindros AA, dis-
tantes 1 m de eixo a eixo, são
aquecidos pelo mesmo gás
calorífico; a Fornalha, col-
cada no intervallo dos dois
cilindros, estende-se por
todo o comprimento do
massaço e é fechado por uma porta em cada extremidade. Os cilindros
são abrigados por uma abobadilha de tijolo, onde se praticam aber-
uras para dar passagem à chamama e ao gás, cuja tiragem se pode regular con-
venientemente com os registos DD. Os produtos da combustão, que se es-
eram sobre a grelha da Fornalha, levantam-se entre os dois cilindros e depois
descem à esquerda e à direita para aquecer as partes exteriores e depois
se depois por uma chamina. As superfícies dos cilindros que ficam
voltadas para a grelha recebem um enduto de argila para resguarda-
as da ação directa do gás, regularizando assim a marcha da operação.
Os cilindros são fechados, posteriormente, por um gás equal, e anterier-
mente por uma tampa movel. O gás posterior B ha um tubo que
serva para dar saída aos produtos da distillação da madeira, que ou são
condensados a um depósito C onde se condensam em forma e o resto escape-se.
pela caminha, ou então são combustados na fornada. Algumas vezes existem também no fundo posterior do cilindro, tubos de prova d’onde se introduzem varas de madeira destinadas a indicar a marcha da operação.

Disposições gerais dos cilindros fixos. O comprimento dos cilindros não é o mesmo em todos os joares: varia de 1,50 a 2,15 em quanto que o diâmetro permanece quasi constante. Em geral obtém-se produtos tanto mais homogêneos quanto mais pequenos são os cilindros, por isso é necessário activar tanto o jogo para que o calor penetre até ao centro da carga. E por isso que nas fábricas de politura em Inglaterra há tendência para diminuir as dimensões dos cilindros, reduzindo a carga a 35% de madeira.

Carregamento dos cilindros e elaboração. É conveniente quando se introduzir a madeira dentro dos cilindros não se deixar em contacto com as extremidades destes, reservando sempre um espaço livre nos pontos onde os cilindros assentam sobre a alvenaria. Na Alemanha reserva-se também superiormente um espaço livre para guga dos produtos volatéis.

O carregamento pode fazer-se introduzindo a madeira haste por haste dentro do cilindro, mas a operação é difícil principalmente quando o cilindro está ainda quente.

É preferível proceder de outro modo. Estando já cortada a madeira no comprimento conveniente, por exemplo 1,50 para os cilindros de 1,50, faz-se um feixe que tenha 0,50 de diâmetro, ligando-o bem com atilhos: introduz-se então no cilindro de modo que não toque no fundo, desprendendo-se os atilhos e continua-se a preencher o espaço vazio, em quanto longitudinalmente-se podem introduzir varas sem grande esforço. Terminado o carregamento coloca-se no seu lugar a tampa do cilindro e lutase com argila. Pode começar então a destilação, devendo emprestar-se sempre a mesma qualidade de combustível. Entre nós empregá-se a egaça, suponhamos que se que se quer obter carvão negro. Começa-se por acender o jogo.
moderadamente na parte anterior da jornalha. Uma hora, aproximadamente, depois manifestam-se alguns gumes brancos denso, principalmente aos vazores d'água. Durante então avançar o jogo para a outra extremidade da jornalha e actua-se a combustão, evitando as grandes chamas.

Passadas 4½ horas, começa a destilação propiamente dita; os gumes brancos tomam uma cor amarela, tornam-se mais espessos, e cobalam cheio em epigrama. Se o cilindro é munido de um tubo disposto de forma que os produtos da destilação se possam queimar na jornalha, a operação pode continuar sem outro combustível. No caso de haver tubos de prova, observa-se então o progresso da destilação, quebrando as varas em diferentes partes para conhecer os pontos do cilindro onde a carbonização está mais atrasada; activase então o jogo nesses pontos. Os produtos da destilação que se evoluem, salindo pelo tubo colocado na parte posterior do cilindro, vão tomando, pouco a pouco, uma cor branca e finalmente apresentam a cor arul. Em muitas fábricas de polvora e este o indicio de que a operação está terminada, n'outras obser-
vase a cor da chama quando se substanciam os gases provenientes da destilação; n'outras finalmente, dá-se por concluída a operação quando o tubo de saída dos gases apresenta junto ao cotovelo uma temperatura tal que se lhe pode aplicar inimamente a mão. O cíclavo então amortecer um pouco o jogo e um quarto de hora depois extinguê-lo, fazendo os registos da jornalha.

A duração total da operação varia com muitas circunstâncias, sendo, em geral, de 7 a 8 horas para a primeira operação. Quando os cilindros já têm trabalhado e conservam portanto algum calor, a duração da operação é menor, mas não convém nunca que seja muito rapida.

Por tanto entre duas operações consecutivas convêm deixar esfriar os cilindros por algum tempo. Estas operações é indispensável, não só para a boa conservação do aço premedio, mas também para se manter sempre o mesmo rendimento em carvão, por que este, como se dissera, e função da su-
ração da operação e da temperatura.

Quando o calor começa a atuar sobre a madeira, até a temperatura de 150° produzem-se unicamente vapores d'água; de 150° a 260° obtém-se carvão incompleto; de 260° a 350° obtém-se carvão roxo; de 350° até 400° produz-se carvão negro empregado na polvera para as bocas de fogo.

Se quisermos obter o carvão roxo, mais inflamável que o carvão negro, é por isso consagrado à polvera para as armas portáteis, e necessário manter constantemente, e durante muitas horas, a temperatura entre 250° e 270°, porque se excedermos um pouco, este último limite, a elevação da temperatura é rasteira e, ainda que se extinguam o fogo, pode ir até 340°, dando grande quantidade de carvão negro.

Este fenômeno é devido à formação dos carburetos de hidrogênio, que produzem elevação brusca de temperatura.

É preciso, portanto, no fabrico do carvão roxo conduzir muito lentamente a operação, durante esta 14 ou 12 horas, tendo o cuidado de não gerar nunca nos mesmos cilindros duas operações consecutivas sem que me seie um intervallo de duas a três horas.

Descarregamento e escolha do carvão: O carvão demora nos cilindros até arrefecer, porque exige o ar, ainda quente tinha o fogo de se inflamar espontaneamente. Logo que está frio introduz-se dentro dos abafadores, que são uma caixa de folha de ferro de forma cilíndrica de 1½ a 2½ de altura fechadas por uma tampa que ajusta perfeitamente.

O carvão, depois de 4 dias tuva-se do abafador e é possa-se a ciranda.

Se se trata de carvão roxo separa-se o que apresenta uma cor muito avermelhada bem como toda a madeira que não ficou em boas condições de carbonização. A escolha do carvão negro, que geralmente é mais homogêneo, reduz-se à separação do jó pelo ciranda, e de toda a madeira que não atingiu gran conveniente de carbonização ou que se apresenta revestida d'uma camada de leitura.

Inconvenientes dos cilindros furos. A carbonização nos cilindros gi-
xos apresenta incontestável vantagem sobre a carbonização em caldeiras, porque, dentro de certos limites, pode regular-se a marcha da operação, mas tem os inconvenientes seguintes:

1º O produto não é homogéneo, porque o calor não actua uniformemente sobre toda a carga, e dentro d'um mesmo cilíndro encontra-se desse a madeira imparfeitamente carbonizada até ao carvão muito negro. Esta irregularidade do produto provem também de cada cilíndro não ser aquecido por uma fornalha especial, e de se achar encastreado; pelas suas extremidades no massico da alvenaria. Disposição esta que ocasiona um aquecimento maior na superfície do cilíndro exposta à ação direta do calor, de que nas extremidades, onde a carga se deve carbonizar mais lentos e imperfeitamente. Os produtos volátéis da distillação escapam-se por um único orificio praticado no fundo do cilíndro, o que dá em resultado, no momento da formação dos carburetos de hidrógeno, ser a temperatura média da carga inferior á da parte posterior. O cilindro onde afluem todos os gases por terem ali o orificio de sabida.

E se a combustão dos produtos volátiles se faz na parte posterior da fornalha, temos neste ponto uma nova causa de aquecimento, e por consequência a carvão deve apresentar-se ali mais escoído do que no resto da massa.

2º Os diferentes dispositivos adoptados para a distribuição dos gases não permitem regular á vontade a combustão destes debaixo dos cilíndros e por isso não se pode variar a temperatura conforme as exigências da operação. D’aqui resulta a necessidade de proteger os cilíndros por abobadilhas de tijolo, que occasionam uma poeira de calor.

3º O carregamento e descarregamento em laboração continua apresenta seus inconvenientes. Se o carregamento é feito por geisers diminuindo o peso da carga porque é necessário uma certa folga para a introdução do geíss. Se se introduzir haste por haste a operação é incomoda, principalmente estando o cilindro quente, e há poeira de calor.

4º O descarregamento, feito em presença do ar e à uma temperatura muito
tas vezes elevada, pode ocasionar a inflamação do carvão embora se faça rapidamente do cilindro para o abafador.

Cilindros móveis. Os diversos inconvenientes que se dão na distillação da madeira nos cilindros fixos, acham-se remedados nos cilindros móveis: em 2 disposições é a seguinte: Uma massa de alvenaria A (tamanho 1.° fig.3) estabelecida, segundo as condições ordinárias, acima de uma chaminé subterrânea B, é guarnecida de um número de gormatelas igual aos dos cilindros de distillação. Cada gormatela consta do cinzeiro C, grelha D e superiormente a está um alojamento E onde se introduz o cilindro. Uma porta G fecha a entrada F do alojamento. Cada cilindro H, feito de lã de ferro, é munido de railes que, escorregando sobre os rodízios e gizos na alvenaria, permitem a facilidade da manobra.

Os produtos voláteis da distillação sahem pelo orifício I e da entrada no agregado de distillação I, de cobre vermelho, que os reveste a vontade por qualquer das gormatelas, onde se combusta, ou os deixe escapar pela chaminé. O combustão opera-se por meio de um tubo horizontal J que, dentro da gormatela, corre paralelamente ao eixo do cilindro. Duas ranhuras longitudinais, praticadas no sentido da garratriz superior deste tubo, são saídas aos gases. Deois cilindros estão afectos ao serviço de cada gormatela, um recebe a carga em quanto o outro está em laboração. Os cilindros carregados de madeira tanto antes como depois da carbonização são conduzidos pelo carro J.

Um termômetro, colocado superiormente a cada cilindro, permite conhecer, a cada momento, a temperatura interior.

Detalhes de construção. O massíco d'alvenaria A (est.1.° fig.5.° c.2) tem 2" em largura por 2" altura; o seu comprimento depende do numero de cilindros que devem ficar apastados 1.° 20 de eixo a eixo, e estes 1.° 30 acima do solo. O alojamento cilíndrico E, estende-se por toda a espessura do massíco, até a distância de 0.275 da parte posterior deste. O alojamento cujo diâmetro é de 0.35 tem na parte anterior 0.92, e nesta parte de maior diâmetro é re-
vestido s'uma guarnição de gotha de ferro F com um rebordo de ferro de contorno contra o qual se aplica a porta C. A porta faz corpo com um reduto que corre sobre uma haste de ferro q', para abrir e fechar com facilidade. Um parafuso q", o que serve de guia a uma barra horizontal movel q'' gira a porta no seu respectivo lugar. Quatro orifícios b', situados dois a dois de cada lado da fumalha à altura de cima do cilindro, são salidas ao jume que é comunicado pelos canaãs b' e chamami B.

Cilindros. Os cilindros H (est. 4° fig. 3) têm 1,35 de comprimento por 0,70 de diâmetro, de gotha de ferro sendo de mais espessura na parte que gira. Directamente exposta ao fogo, têm fixo o fundo posterior e anteriormente são ghada por uma porção segura por grampões k'k'. De forma que a porta tem uma abertura k'' por onde se falam tirar amostras da madeira para conhecer os progressos da carbonização na volta do pyrometro. O orifício k' por onde se escapam os produtos volatéis da distillação é guarnecido de um tubo troncocónico que se prolonga para o exterior.

No interior do cilindro, correspondendo a geratriz superior, há um canal semi-cilíndrico l'v disposto de modo que junto do fundo fico deixa a descoberta o orifício de saída k'' n'uma superfiçie, proximamente de 0,70, e na extremidade exposta termina a 0,75 da boca de cilindro. Estas aberturas estão calculadas de modo que os produtos volatéis se escapem e saírem igualmente pelas duas extremidades do cilindro. Com esta disposição a totalidade dos gases afluiendo para o fundo do cilindro determinaria ali uma elevação brusca de temperatura. Os furos em T lV, fixos na parte inferior do cilindro facilitam o seu movimento sobre os rodízios e em todas as manobras.

Conjunto de Distribuição dos gases. A distribuição dos produtos gassosos da distillação faz-se por meio de suas linhas de tubos (est. 5° fig. 3) fixados semelhante na figura.

O tubo superior l' está em comunicação com o interior dos cilindros por as tubuladuras l'; recebe os produtos da distillação que descem por l' até
que chegam ao tubo inferior \(L' \) onde a parte mais condensada vai. Depois se partir-se nas gaiolas por meio das bifurcações \(L'' \). Tomar-se-ão convenientemente dispostas e que se podem abrir ou fechar à vontade, regularizam o movimento dos gases.

Pyrometro. O pyrometro \(M \) (est. 5, fig. 45) consiste de uma barra horizontal \(m' \), de latao, de 0,025 de diâmetro e 1,45 de comprimento, susceptível de se alongar livremente. Esta barra está colocada na parte inferior do canal semi-circular \(H' \) que dâ suco aos gares, e é giza na parte posterior por meio de um arredite. Otrasse a tampa do cilindro, onde há para isso uma abertura \(G' \) guarnecida com um pequeno tubo esférico que recebe um taco de argila, para evitar a suco dos gares. A extremidade livre da barra de latao liga-se uma ponta d'água que encontra a parte inferior de uma alavanca vertical \(M' M'' \), movendo em torno de um pequeno eixo horizontal. A alavanca é formada de duas partes remidas por uma corre nha, para facilitar a entrada e saída do cilindro no seu respectivo alojamento. Para mais de se t a alavanca gôse-se em movimento o ponteiro \(M'' \) que acresce ao grão de temperatura sobre um arco graduado \(M'' \). O ponteiro munido de seu contrapeso \(M'' \) constitui uma alavanca de cotovelos assente por dois moinhos sobre um suporte de ferro fundido \(M'' \). Um pequeno talão \(M'' \) recebe o impulso da barra vertical a 0,034 de distância do eixo de rotação, prolongando-se ainda o ponteiro \(1,75 \) até encontrar o arco graduado. Para que as indicações do pyrometro sejam exactas é necessário que a extremidade de giza da barra de latao esteja completamente imóvel. Obtém-se esta immobilidade por meio de um parafuso \(H'' \) que, solidamente cravado no fundo gizo do cilindro, atravessa a parede da caixa de ferro fundido \(H'' \) onde é seguro pela porca \(M'' \).

O modo por que funciona o pyrometro é muito simples. O orifício que dá passagem à extremidade livre da barra pyrométrica recebe um taco de argila; ressente-se também de argila o tubo \(H'' \) por onde sahem os gazes e dá-se uma forma com argila fluida em água na superfície
exterior do cilindro. Estando as operações feitas, o carregamento do cilindro que vai ser colocado no seu alojamento.

Entra a pressão do parafuso que assegura a inmovilidade do cilindro; abaixam-se a parte movel da alavanca vertical e move-se o parafuso, até que fique em contato com a extremidade da barra geográfica. Feita em seguida a parte do alojamento e a operação pode começar.

Pela acção do calor a barra dilata-se, pois em movimento a alavanca vertical, e o movimento transmite-se ao ponteiro.

O pygrometer é de grande sensibilidade. Com efeito, o latao tendo uma dilatação linear de 0,00249 por metríc para uma elevação de temperatura de 1°, a barra de 1°,45 no comprovamento a 100° de temperatura apresenta 0,00249 de dilatação que, multiplicada por 1,74, resulta de um movimento dos dois braços do ponteiro. Sera 0,123, caminho percorrido pelo ponteiro sobre o arco graduado, de sorte que uma variação de temperatura de 1° corresponde aproximadamente a 0,015, que se aspercia bem mesmo a distância.

Modo como funcionam os cilindros. O cilindro colocado sobre um suporte fixo I recebe a madeira até que esteja completamente cheio, pois se entras a tramo com interposição de uma lata argiloosa. Abre-se a porta C, e o cilindro condurido sobre o carro até em frente à jornalha, e introduzido no alojamento e fixa-se. O tubo por onde os gazes se devem escapar, e que vem revestido de argila, ajusta-se no tubo do aparelho de distribuição e evita as fugas ocasionaes. Faz-se o pygrometer de modo que quebre zero, e fecha-se a porta C de alojamento. Procede-se do mesmo modo para as outras jornalhas. Feito isto, os orifícios de saída dos gazes e os dos tubos de combustão das jornalhas impares N.ª 1, 3, 5, etc. abrem-se, e em vez de se o gogo e mantém-se com maior ou menor força conforme a qualidade de do carvão que se pretende obter, até que as produtos voláteis da distillação se inflamem nos tubos de distribuição.
Há se emprega então mais combustível, porque os produtos voláteis da distillação alimentam o goso. Abrem-se os canais que dão acesso aos gases nas gornalhas maiores N.º 2, 4 e 6, regulando os fios gornalhas impares para que a distillação continue ali em boas condições, segundo as indicações do fogueteiro.

Passado algum tempo o calor desenvolvido pela combustão dos gases febreio dos cilindros impares eleva-lhes a temperatura, abrem-se então os canais que dão saída aos gases desenvolvidos dentro dos cilindros, e que até ali se tinham conservado fechados para evitar que secondensem no interior, com deposição de alcetração, os produtos gasosos dos cilindros impares.

A operação continua então simultaneamente nos cilindros impares e normais, com uma actividade que se regula, conforme as necessidades. O trabalho continua assim até que os gases dos cilindros impares se inflamem, e, se a operação tiver sido bem conduzida, neste momento deve já estar ultimada a carbonização nos cilindros impares. Abre-se a porta da gornalha N.º 4, aproxima-se o carro, tira-se o cilindro que é substituído logo por outro carregado de madeira e procede-se do mesmo modo com o N.º 3 e 5. Conservando fechados constantemente os canais de saída dos gases nos cilindros que foram substituídos, prosegue a operação, como teve lugar com os cilindros normais, que são depois substituídos por seu turno e assim sucessivamente, sem necessidade de combustível estranho.

Como há dois cilindros para cada gornalha, e evidente que a terceira carga das gornalhas impares deve ser feita em cilindros que foram retirados cheios de carvão, mas uma hora depois de retirados das gornalhas, o carvão está suficientemente frio e pode ser usado. Entre os abacaxares, a sua receção da operação é maior quando se quer obter carvão roxo, mas, debaixo do ponto de vista da homogeneidade, mesmo quando se trata de fabricar carvão negro, convém não acelerar a distillação.

Vantagens dos cilindros móveis.

1. Cada cilindro tem uma gornalha especial, a saída dos gases opera-se
equalmente pelas suas extremidades, e combustam-se em todo o conjunto da jornada, o que faz cessar as canas que nos cilindros fizeram a falta de homogeneidade do produto.

2. O dispositivo de distribuição dos gazes permite regular a combustão à vontade, tornando o seu emprego tão fácil para a produção do carvão roxo como de carvão negro.

3. Toda a manobra dos cilindros é fácil e conhecida e não há perdas de calorias, por que os alojamentos dos cilindros temoram abertos por muito pouco tempo, no momento de entrada e saída.

4. A totalidade dos produtos gáseros da destilação pode ser utilizados como combustível, tornando-se indispensável o combustível estranho de secois de começar a operação.

5. A leitura do termômetro, indicando a temperatura interior dos cilindros, permite operar com certa precisão e rigor.
Capítulo II
Doseamento

I.
Funções que desempenha cada um dos componentes

No doseamento da pólvora, cada um dos componentes, salitre, enxofre e carvão desempenha uma função especial. O salitre é o elemento combustível, o enxofre e o carvão são combustíveis. O carvão e o salitre fornecem os gases, o enxofre liga entre si os dois componentes, dá dureza e consistência à pólvora, aumentando-a combustibilidade. Se, e apoderar-se do potassio do para, nos resíduos solúveis da combustão, formar um determinado composto. Se aquecermos lentamente gradualmente uma porção de pólvora, logo que a temperatura atinja 250°, o enxofre arde em chama, torna-se incandescente o carvão e formam-se imediatamente os diferentes produtos da combustão.

Se suprimirmos o enxofre e conservarmos unicamente a mistura de salitre e carvão, esta só se inflama à temperatura de 360°. Um excesso de carvão acelera a combustão, um excesso de salitre retarda. Parece demonstrado pela experiência que um excesso de enxofre diminui a vivacidade da pólvora mas assegura a sua boa conservação. Demonstra ainda a experiência que para uma boa pólvora, pequenas variações no doseamento não têm influência sensível nos efeitos balísticos. As circunstâncias do fábrico tornam mesmo inevitáveis estas variações porque: 1. o carvão que se emprega não se compõe de carbone quimicamente puro; 2. a pólvora contém sempre humidade em quantidade variável; 3. é impossível conseguir a íntima e absoluta mistura; 4. finalmente, durante as diferentes fases do fábrico, a mistura sofre alterações contínuas nas proporções relativas. 5. 6.
II.

Doseamento das diferentes polveras.

Cada polvera tem um doseamento particular, conforme as condições e especificações a que cada uma delas deve satisfazer.

O que se exige nas polveras de guerra é sobre tudo força e uma potencial tão grande quanto possível, nas demais produção abundante de gases; nas de caza rápido de inflamação e combustão.

Em Barcarena fabricam-se actualmente as polveras indicadas na tabela seguinte:

<table>
<thead>
<tr>
<th>Designação</th>
<th>Marcas de fábrica</th>
<th>Doseamento</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polvera de minas</td>
<td>MM</td>
<td>62 18 20</td>
<td>Carvão negro de salgueiro preto ou branco</td>
</tr>
<tr>
<td>Príncipe Gina</td>
<td>PF</td>
<td>76 10 14</td>
<td>Carvão negro de sangüineiro</td>
</tr>
<tr>
<td>Príncipe supergina 1ª</td>
<td>PSF/1</td>
<td>76 10 14</td>
<td>Carvão roxo de sangüineiro</td>
</tr>
<tr>
<td>Príncipe supergina 2ª</td>
<td>PSF/2</td>
<td>76 10 14</td>
<td>" " "</td>
</tr>
<tr>
<td>De guerra grossa</td>
<td>G</td>
<td>75 12,5 12,5</td>
<td>Carvão negro de salgueiro preto</td>
</tr>
<tr>
<td>De guerra, Gina</td>
<td>FF</td>
<td>75 12,5 12,5</td>
<td>" " "</td>
</tr>
<tr>
<td>Para armas portatéis</td>
<td>FN</td>
<td>76 10 14</td>
<td>Carvão roxo de salgueiro preto</td>
</tr>
<tr>
<td>Para projecteis</td>
<td>FN+</td>
<td>76 10 14</td>
<td>" " "</td>
</tr>
<tr>
<td>De grosso grão</td>
<td>GG</td>
<td>74 10 16</td>
<td>Carvão negro de salgueiro preto</td>
</tr>
<tr>
<td>Brimantica</td>
<td>Pr</td>
<td>74 10 16</td>
<td>" " "</td>
</tr>
</tbody>
</table>

A exemplo das polveras estrangeiras o doseamento das novas polveras para armas portatéis e das de grosso grão, foi modificado por um aumento na quantidade de carvão e sobre tudo por uma diminuição do enxofre.

Polvera de minas MM. Esta polvera destinada ao comércio deve principalmente obter-se em boas condições económicas e produzir a maior quantidade possível de gases, circunstâncias que se realizam diminui...
do-lhe a percentagem do salitre e aumentando as proporções do carvão e enxofre. Esta pólvora não encontra hoje aplicação aos usos da guer-
ra, pois foi descoberta dos explosivos modernos.

Pólvoras de Caça, PF e PSF nº 1 e 2. Estas pólvoras distinguem-se das de guerra para bocas de fogo por que, em geral, têm maior percentagem
de salitre e são fabricadas com carvão roxo. As pólvoras PSF nº 1 e 2
são fabricadas da mesma massa, diferindo apenas no tamanho do grão.

Pólvoras de guerra G, FF, FN e FNf. As pólvoras G e FF são obti-
das da mesma massa, com o mesmo processo de fabrico, diferindo algu-
mas no tamanho do grão. O tamanho do grão da pólvora G regular
por 3, e da FF por 4,5. As pólvoras FN e FNf são igualmente obtidas
da mesma massa e com o mesmo processo de fabrico sendo o tamanho do
grão da pólvora FN 0,75 e o da FNf 0,5.

Pólvoras de guerra GG e prismática. Estas pólvoras embora se
mismo foseamento diversifiquem na forma do grão e no processo de
fabrico.

III.

Determinação teórica do foseamento da pólvora.

Obtido um carvão de um determinado tipo e suposição que se mantém,
as subsequentes carbonizações, as mesmas condições de fabrico, precisam
de deterMINAR qual deve ser a proporção de estes carvões no foseamen-
to da pólvora.

A análise química oferece meio de conhecer a composição elemen-
tar de qualquer substância orgânica, mas o processo é pouco expedi-
to e não se de, geralmente, executar-se nas fabricas de pólvora. Pode-
se, portanto, resolver a questão determinando nada a composição elemen-
tar do carvão, mas a quantidade de oxigênio necessária para quei-
nar um dado peso de um determinado carvão e calcular depois a
quantidade de salitre que deve fornecer esse oxigênio e o enxofre que,
apodarando-se do potássio fornec e resíduo sólido, como se vê da fó-

mula seguinte:

\[K_0, A \times 0^5 + 3C + S = 3CO^2 + A \times + KS. \]

Foi, fundando-se na lei de "Welter, cujo enunciado é: o calor desen-
volvido por uma substância que se combus-ta é proporcional à quan-
tidade de oxigênio que entra na combinação, que Berthier imaginou
um processo muito simples para conhecer o poder calorífico de uma sub-
stância organica, independentemente da determinação da sua composi-
ção elementar, e Paulo Saint Robert aplicou o princípio ao ensaio
do carvão para a pólvora.

Método de fazer o ensaio. Toma-se do carvão que se quer analisar
um peso \(p \), bem seco redorizado a \(50^\circ \), e mistura-se com \(50 \) vezes o mesmo
peso de proto-oxigênio de chumbo poro e redorizado igualmente a \(50^\circ \). Intro-
surse a mistura \(x \) um cadinho de barro e deixa-se que por cinco ou
três horas de proto-oxigênio de chumbo igual à que primitivamente se
encorjou; tija-se o cadinho e leva-se ao fogo. Logo que a massa
entra em fusão, coloquem-se sobre a tampa do cadinho alguns carvões
acesos e actua-se o fogo por espaço de 10 minutos. Retirado o cadinho
do fume deixa-se arrefecer, quebra-se e obtém-se um botão de chumbo
metalico. Convenham repetir a operação até se chegar a dois resultados
concordantes. Chamando \(P \) o peso do botão de chumbo metalico, \(a \)
a quantidade de oxigênio fornecido pelo proto-oxigênio de chumbo \(p \) para
combustar o peso \(p \) de carvão, teremos pelos equivalentes:

\[
P_b : 0 : : P : \alpha \quad \text{em 103,50:8 : : P : \alpha}
\]

\[\alpha = 0,0772P \]

Suponhamos que empregamos 10 grammas de carvão, isto é
\(p = 10^5 \), será \(\frac{\alpha}{10} = 0,00772P = \alpha \)

Sendo \(\alpha \) a quantidade de oxigênio necessaria para queimar 1 gram-
ma do carvão submetido ao ensaio.

Para determinar a quantidade \(\alpha \) de salitre que deve fornecer o ox-
genio para 1 gramma destes carvão se combustar: teremos:
A quantidade de enxofre, a que chamaremos \(\gamma \), que deve combinar-se com o potássio contido na quantidade de salitre \(\eta \); será:

\[KO\text{AxO}^5: 0^\circ :: \eta: \gamma \]

Substituindo nas expressões (1) e (2) o valor dos equivalentes: teremos:

\[102: 48 :: \eta: \alpha \]
\[102: 36 :: \eta: \gamma \]

Tirando os valores de \(\eta \) e \(\gamma \) expressos na quantidade de oxigénio necessário para combater completamente uma grama de carvão dado:

\[\eta = \frac{102}{48} \alpha = \frac{57}{3} \alpha \]
\[\gamma = \frac{102}{48} \alpha = \frac{1}{3} \alpha \]

Logo o doseamento da pólvora para 1 grama de carvão que exige \(\frac{1}{3} \) de oxigénio para se combater completamente, será

\[
\left\{ \begin{array}{l}
\text{Salitre...} \ \frac{17}{3} \alpha \\
\text{Enxofre...} \ \frac{2}{3} \alpha \\
\text{Carvão...} \ \frac{4}{3} \alpha
\end{array} \right\} \quad \text{ou} \quad \left\{ \begin{array}{l}
\text{Salitre...} \ \frac{5}{3} \\
\text{Enxofre...} \ \frac{8}{3} \\
\text{Carvão...} \ \frac{24}{3}
\end{array} \right\}
\]

Então com o valor de \(\alpha \), achado pelo ensaio feito sobre o carvão, tem-se todos os dados para determinar o doseamento. Suponhamos \(\alpha = 2,33 \) será \(\frac{4}{3} \alpha = 50,3 \), e aumentando com 4% do peso do carvão para corrigir a humidade absorvida, a expressão converter-se-ia em:

\[
\left\{ \begin{array}{l}
\text{Salitre...} \ \frac{5}{3} \\
\text{Enxofre...} \ \frac{8}{3} \\
\text{Carvão...} \ \frac{107}{69,7}
\end{array} \right\} = \text{redução à forma centesimal} \left\{ \begin{array}{l}
\text{Salitre...} \ \frac{72,8}{100} \\
\text{Enxofre...} \ \frac{11,6}{100} \\
\text{Carvão...} \ \frac{15,36}{100,00}
\end{array} \right\}
\]

Por este método acha-se o doseamento racional em relação a um determinado tipo de carvão, mas como nestas questões a cancelação da pólvora é indispensável, faz-se uma pólvora assim doseada e observando-se depois se, nas armas a que se destina, satisfaz ou não às condições exigidas. Se não satisfazer modifica-se ou corrigindo os números ou faz-se variar o processo de fabrico.
Se em lugar do processo que indicamos para conhecer a quantidade de óxido de oxigênio necessário para queimar completamente uma grama de carvão, tivessemos o resultado de uma análise elementar, seria:

\[\alpha' = \frac{\text{C} \times \frac{2}{3} + \text{H} \times 8 - 0}{100} \]

Com efeito, suponhamos que tínhamos um carvão cuja composição elementar, em carbono, hidrogênio e oxigênio fosse:

\[\text{C} = 85,6 \]
\[\text{H} = 2,5 \]
\[\text{O} = 10,3 \]

Chamando \(\eta \) a quantidade de oxigênio necessário para transformar o carbono em ácido carbonícola, teremos:

\[\text{C} : \text{O}^8 : 35,6 : \eta \] ou \[6 : 8 : 35,6 : \eta \]

Se chamarmos \(\eta' \) a quantidade de oxigênio que deve transformar em água e hidrogênio contido no carvão, teremos:

\[\text{H} : \text{O} : 2,5 : \eta' \]

Logo a quantidade de oxigênio necessária para transformar 100 gram.

Do carvão dado em ácido carbonícola e água, será:

\[\alpha \times 100 = 85,6 \times \frac{2}{3} + 2,5 \times 8 \]

(8)

Note que como nenhuma ocorrência de hidrogênio deva ser fornecida pelo salitre, porque na composição elementar do carvão existem 10,3% de oxigênio, devemos subtrair este da equação (8) e teremos:

\[\alpha = \frac{85,6 \times \frac{2}{3} + 2,5 \times 8 - 10,3}{100} \]
Capítulo 3º
Fábrica da pólvora

I.

Diferentes phases do fábrico da pólvora.

As operações que constituem o fábrico da pólvora são:

Trituração previa dos componentes, mistura íntima, envasque, granulação, separação do pó verde, iluminação, enxágue e calibração.

Examinaremos separadamente cada uma destas operações, pelo que respeita ao fábrico da pólvora ordinária e trataremos depois da pólvora de grosso grao e da prismática.

Trituração. Como o enxofre é difícil de reduzir a pó isoladamente, tem-se com o carvão em proporção determinadas conforme o de seamento da pólvora que pretendemos fabricar, e introduzem-se os dois componentes no triturador. Se pretendêssemos fabricar pólvora para as armas portatéis como o de seamento é:

Salitre 76

Enxofre 10

Carvão 14

Enxergamos 20º de enxofre e 28º de carvão e levamos-hamos ao triturador para os reduzir a pó.

Triturador. O triturador é um cilindro de gotha de ferro de 1,35 de diâmetro por 3,20 a 4,50 de comprimento (est. 2º fig. 12) tendo no sentido da generatriz uma abertura, para carga e descarga, a que se ajusta uma porta de gotha de ferro com guarnições de madeira e uma grade de ferro. No perímetro interior do cilindro existem sete travessas de madeira revestidas de gotha de ferro.

A carga compõe-se além do enxofre e carvão 8' uma porção de balas de brouxe de 20 a 25 mil diâmetro, pesando 60º. O pó de areia recebe
movimento de rotação em torno do seu eixo e faz 30 voltas por minuto, duran-
to a operação 2 horas para as polveras G e FF e quatro horas as ou-
tras. Terminada a operação, tire-se a porta do triturador e substitú-
sse por uma grade de ferro que permite separar as balas de enxofre e carvão
reduído a pó, que é recebido em caixas colocadas de baixo do cylin-
dro sendo então o movimento deste muito lento. Para evitar as geadas do
pó, o triturador é abrigado por uma camisa de lona ou de folha
de ferro.

A mistura assim obtida soma o nome de composição binária e é
passada à forneira de arame de latão para separar algumas partes
da matéria que não foram completamente trituradas. Ve-se pois que
na operação assim conduzida se podem juntar as condições de fosca-
mento: 1º porque se encontra a mistura não ficar perfeitamente homogênea;
2º porque separando-se pela forneira algumas partes incompleta-
temente trituradas não há a certeza de que nêlas se contenha, em quan-
tidades iguais, o enxofre e o carvão.

Para evitar este inconveniente, na Itália, na fábrica da polvora
de Tossone, o carvão é previamente reduzido a pó num triturador
formado de um cylinro de ferro juntado, com saliências helicoidais,
daendo 45 voltas por minuto e ajustando-se exatamente dentro do
outro cylinro d'água, cujo fundo é revestido de juros para deixar pas-
sar a matéria triturada. O enxofre é reduzido a pó num triturar
do formado de dois cylinros lisos, do mesmo diâmetro, aplicados um
contra o outro, em forma de laminador, dando 2ª a 2½ voltas por minu-
to. O salitre empregava-se em pequenissimos cristais e o enxofre é fô-
zeirado mecanicamente.

Foram-se então dois binários, um de salitre e carvão em pó, outro
de enxofre e carvão tambem em pó, que são ainda triturados du-
rante 6 horas em trituradores de folha de ferro, recebendo primeiro o
carvão e 200ª de balas de bronze, e ½ de hora depois o outro componente.
salitre e enxofre.

Neste processo, respeitam-se mais as proporções do doceamento porque as partes da matéria não trituradas, se separam pela goeneira, antes de remir um peso determinado, o carvão e enxofre.

Mistura intima. Formada a composição binaria, como é regulamentar entre nós, mistura-se em seguida com o salitre nas proporções convenientes, farmando tabejas às 25%.

Na hipótese de estabelecemos cada tábua será composta de:

Salitre 19\%
Composição binaria .. 6

Para fazer a mistura intima, emprega-se um açoarelho denominado misturador, cuja velocidade de rotação varia, término médio de 20 a 22 voltas por minuto. A operação dura 45 minutos.

Misturador Jaccher. O misturador (fig. 2º e fig. 3º e 4º) é de corpo assente sobre uma grade de madeira, com os fundos e a divisão central também de madeira. Os eixos estão revestidos de madeira coberta de couro. Uma abertura, correspondente a cada compartimento, a que se pode adotar uma porta ou uma grade serve para carga e descarga. Em cada um dos compartimentos introduz-se juntamente com o misto 20 a 30 kg. de balas de madeira dura de 20 a 30\% mm. de diâmetro. Terminada a operação se separa o misto das balas como teve lugar no triturador.

Encasque. O encasque é feito no mouinho de galgas (fig. 12º).

Compreende-se o açoarelho de um par de galgas verticais de bronze, rolando sobre um jorato do mesmo metal. Espalhado-se com igualdade, no jorato das galgas a tábua e rega-se com 600 a 700 grammas d'água. Espanha-se logo em movimento as galgas, que durante os primeiros cinco minutos devem dar 4 a 5 voltas por minuto, aumentando depois o número até 7 a 7\% voltas por minuto.
Quando a operação está para terminar, deixa-se também a velocidade de rotação. Meia hora depois de aplicar o casco que se forma, chega a massa para sebaios, do trilho das galgas. Na última meia-hora já se não quebra o casco, então com o rodo e com a massa, o operário aproxima do trilho das galgas a massa que se afasta. A duração do encasque é de uma hora para o polvera A e FF e de quatro horas para a FN e ENs; neste último caso as regas garem-se de hora a hora. Em alguns meios de galgas, o rodo e o regador funcionam mecanicamente. Na galgas pesadas e galgas leves; as primeiras produzem melhor trabalho e o seu gasto regular por 4500 a 5000.º

Trabalho das galgas. A sujeita ação das galgas em polverizar e incorporar os componentes da polvera é favorecida pela adição da água durante o trabalho, não devido a quantidade desta seca, em excesso, nem por defesa. Uma pequena quantidade de água deixava a tarefa no estado de ser que facilmente se escoava e até sujeita a deslocamentos perigosos. Uma quantidade de água muito grande de convertir em massa fluida que escaparia à ação das galgas. É necessário em sejar a água em proporção tais que a quantidade existente na massa, no momento de terminar o encasque, seja tão grande quanto possível, sem contudo ultrapassar um certo limite, por que então podia diminuir o produto da granulação. Quanto mais seca é a massa, em igualdade da água desprendida no encasque, tanto mais se conserva a iminência da mistura nas operações subsequentes. A evaporação provocada pela fragmentação da massa tem por efeito destruir-lhe a homogeneidade, fenômeno este que será tanto menos sensível quanto menor for a quantidade de água com que a massa sahe do encasque. O limite deve variar entre 2 a 5 por cento.

Velocidade das galgas. O efeito da trituração aumenta, em igualdade de circunstâncias, com o peso das galgas, mas é necessário que cada centímetro quadrado da circunferência media da piasta, suporte o mesmo peso durante o mesmo tempo. A velocidade de rotação que corresponde ao melhor modo de trituração parece variar;
para as galgas pesadas de 7 a 11 voltas por minuto. De experiências feitas em Ingla-
terra, resulta que uma rotação rápida e de curta duração é preferível a uma rotação leu-
ta e mais prolongada, o que mostra que o número de voltas sujeita dificilmente a
grande velocidade e duração das galgas por minuto.

Duração da operação. A duração da trituração exerce uma influência notável
sobre a mistura final e a densidade da matéria. Experiências ultimamente gei-
tas em Sévres, demonstram que, quando se empregam galgas pesadas, a densidade
da matéria começa por diminuir mais ou menos rapidamente, segundo a quan-
tidade de água e o peso específico médio da carga, até um mínimo além do qual
vai successivamente aumentando. Este mínimo parece corresponder a uma
duração de trituração que varia de 1/2 a 1 hora, tendo a massa 2 a 3 por cento de hu-
nidade. O quadro seguinte mostra os resultados obtidos.

Quadro

<table>
<thead>
<tr>
<th>Duração de trituração (horas)</th>
<th>Humidade, por cento na ocasião de término da operação</th>
<th>Densidade real da matéria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,32</td>
<td>1,501</td>
</tr>
<tr>
<td>2</td>
<td>2,50</td>
<td>1,527</td>
</tr>
<tr>
<td>3</td>
<td>2,50</td>
<td>1,565</td>
</tr>
<tr>
<td>4</td>
<td>2,90</td>
<td>1,599</td>
</tr>
</tbody>
</table>

O fenômeno tem fácil explanação se atendermos a que a densidade do salitre, em
pequenos cristais, é 2,1 a 0º; a do enxofre regimado, 1,87 a 0º; e a do carvão distillado
0,900 aproximadamente. Ora a trituração destas três substâncias, isoladamente, em gal-
gas pesadas, podendo a operação durar 4 horas, faz variar a densidade do salitre
de 1,500 a 1,700; a do enxofre de 0,650 a 1,320 e a do carvão de 1,270 a 1,520. Se a tri-
turação durar 6 horas, a densidade do salitre e do enxofre não aumenta mais e a
do carvão cresce muito pouco. É necessário portanto admitir, no princípio da tri-
turação das duas primeiras substâncias, a existência de um período de polverização
correspondente a uma diminuição brusca de densidade inicial, e que deve preceder
grossamente o período de incorporação progressivamente ditos. Em geral os trabalhos
das galgas dar-se-ão, quando a sua duração por ser de 1/2 a 1 hora, a uma densida-
Feminina da carga, todas as vezes que os seus componentes mais fortemente reduzidos a pó impalpável. Pode-se concluir-se que quanto mais compacta é a partição mais o verniz ganha em densidade e menos perde o solúte e o envolvente. A pequena densidade del' uma dada polvorina é indicio d' uma partição imperfeita.

Granização. A granização tendo por fim reduzir a grao as massas encascadas, facilitar o emprego e a conservação da polvorina. O emprego da polvorina em grao torna mais facil a inflamação das cargas, porque a chamada geometria nos interstícios dos graos e invade rapidamente toda a massa. A polvorina em grao, dava-se nos transportes a separação dos componentes, em ordem aos seus pesos específicos, e a mistura intima desaparecia. Os ebaiso do ponto de vista da conservação oferecia uma grande superfície e seria maior a sua hygrometricidade do que no grao, onde só varia com o tamanho e forma dos mesmos graos, em virtude do augmento ou diminuição relativa da superfície exterior total. A granização operou-se em aposentos denominados granisadores, de que ha diferentes tipos:

Gravisador de rotação. Consta de dois toros de madeira, fig. 13.º de forma jorjórica, reunidos por travessas, entre as quais se adoptam erinos de coiro com orificios do tamanho correspondente às dimensões regulamentares do grao da polvorina, que se pretende granizar. O granisador jorjó localizado dentro d' uma caixa, a brigado por uma camisa, e tem movimento de rotação em torno d' um eixo. A massa depositada n' um teia introduz-se no granisador por uma abertura praticada n' um dos teias, em seguida para isso um guil de coiro. Dentro do granisador existem uns massos de madeira, que quebrando a pasta a reduzem a grao.

O produto da granização passa através do erivo e é recebido n' uma caixa de madeira, localizada inferiormente a este.

Como o grao vem misturado com o pó verde, faz-se a separação por meio da feixeira de cabelo. A feixeira é de forma cilíndrica; tem 2,07 de comprimento e 0,87 de diâmetro e está convenientemente disposta dentro d' uma caixa de madeira. O pó passa através da tela, e o grao limpo é recebido n' uma caixa. Como
Cerica sempre dentro do granisador parte da massa, resbusada a fragmentos de dimensões maiores do que o tamanho regulamentar do grão, e que por isso não pode passar pelos orifícios do crivo, é levada então ao rolador, onde os fragmentos se reduzem a grãos.

Para a polvora EN se faz a relação no aparelho lefebure, de que logo falar-se-emos, emprezando crivos com orifícios de 0,75.

Os fragmentos saem nos crivos onde são reduzidos a grãos pelo movimento de viã-vem, de uma arca de madeira, cujo peso varia de 0,900 a 1,500.

Granisador com movimento de via-vem. Em Barcarena, bem como em muitas fábricas estrangeiras, emprezam-se granisadores, como o que se verifica representado na fig. 14. Consta de um crivo de crivo, movendo-se sobre duas robas, assentado horizontalmente na abertura superior de uma caixa, dividida em diversos compartimentos por jundos guarnecidos de orifícios de diferentes tamanhos. Pode ser movido a mão ou mecha nicamente. Deita-se a massa dentro do crivo juntamente com a arca D, que jeda choque e quebra e granisa a polvora.

Granisador Lefebure. Em Barcarena existe também o granisador Lefebure, fig. 15. Consta de um caixilho octogonal A A ou de assentam os jundos. O caixilho suspenso por cordas é atravessado por uma manivela vertical C com um cotovelo de modo que pelo movimento excêntrico do caixilho é injirmese aos jundos um movimento de via-vem.

Os jundos, fig. 16 e 17 constam de dois crivos, o primeiro A, cujo fundo é formado de uma chapa de cobre ou latão, recebendo a massa e a arca C: o segundo crivo B de orifícios menores fica inferiormente ao primeiro. O produto da granisão passa do segundo crivo para o jundos de crivo.
na E que, retendo o grão deixa passar o pó seco para o
sumo D. A massa é introduzida no aparelho
por junhos e depois de granizada, o grão branco é con
servado pelos tubos 5 e 6 e o pó pelos tubos 8 e 9 para os
respectivos barris.

Este granizador armado com erros cujos orifícios
variam de diâmetro conforme a qualidade da pol
vora que se quer fabricar. Como o granizador
tem lugar conservando a massa uma certa quan
tidade de humidade, sucede que o pó verde em
seca a grandeza de cabelo e não seixa fazer-se
a separação. Entre nós o granizador Lebelve
funcionalmente como redutor.

Iustração. O pó seco depois de granizado
e limpo do pó é ilustrado. A ilustração tem por fim dar aos grãos da pólvora um
certo brilho quebrar-lhes os arestas vivas, arredondar-lhes os ângulos eliminando as
partes gráveis, fazer-lhes os poros exteriores e aumentar a sensibilidade, donde resul
ta a dupla vantagem de diminuir a higrometriaidade da pólvora e prevenir o in
conveniente de se reduzir a pó. O aparelho em que se faz a ilustração tem o nome
de ilustrador. Entre nós se emprega o ilustrador ordinário e o ilustrador graneur, tou
do um como outro são de forma cilíndrica com movimento de rotação em torno do eixo.
O ilustrador ordinário, cuja carga é de 50" por se em Barreirense, a ilustração da
Pólvora C e F. A operação dura 4 horas dando o ilustrador 6 a 10 voltas por mi
muto.

A ilustração da pólvora FN e ENS é feita no ilustrador graneur: a carga é de 100”,
para a operação 7 horas sendo 20 o número de voltas por minuto. A velocidade de
rotação do ilustrador não é constante, no princípio começa por 5 a 7 voltas por mi
nuto, depois atinge o máximo e é medida que a operação se aproxima do seu tér
mino o número de voltas torna a diminuir até 7 ou 5.

Esta ilustração é indispensável, principalmente, no fim da operação porque os
A polvora adquire um certo grau de calor e se se desencarregar o ilustrador sem dar tempo a que arrefecesse, diminuindo a velocidade de rotação, sucedia que observava humida de do ar e os grãos ficariam embaciados.

A polvora depois de ilustrada é passada ao crivo de mão para lhe separar o bagaço verde. Denomina-se assim os grãos de polvora que não passam pelos orifícios do crivo. A polvora FN e FNS, depois de seca, é novamente ilustrada por espaços de 2 horas. A primeira ilustração dir-se ilustração em verde, a segunda ilustração em seca.

Enxugo. Tem por fim esta operação tornar a polvora de toda a humidade, por que de outro modo, aglomerando-se os grãos, formaria torrão, a velocidade de inflamação ficaria alterada pela diminuição dos interstícios; o salitre eflorescia desaparecendo a mistura íntima, deixando o grão separado e em condições de se redimir melhormente a fogo. Além disso a humidade influi também nos efeitos balísticos. O enxugo pode ser feito ao ar livre ou em estufas.

Enxugo ao ar livre. Por muitos anos se fez em piazzarum ou enxugo da polvora ao ar livre. Para esse fim usou-se um pateo babrilhado e defendido por altos muros, acham-se estabelecidos, acima do solo, vários renques de taboleiros de madeira, fig. 18. No estes taboleiros estavam-se joamnos e espalhava-se sobre eles a polvora em camada de 2 a 3 centímetros, segundo o tamanho dos grãos. Luweo mais girar o grão mais espessa pode ser a camada.

A operação se deve começar depois que ter se esfajado na noite. Uma ou duas horas depois da polvora estar ao sol é mexida com rodos de uma ferpa para lhe renovar a superfície exposta à ação do ar. E a intensidade do sol é grande, sobressai a princípio, a polvora com joamnos, para que o enxugo não seja muito rápido, porque nesse caso a evaporação da humidade se faz também com mais rapidez, as boas condições do grão ficando prejudicado.

Peço que o dia acirbe a polvora completamente bem, levantando os joamnos da direita e da esquerda de forma que a polvora fique reunida em monte no centro do joamno. O operário limpa este do joamno que tem aderente, estende-se de novo sobre
o taboleiro e espalha a polvora em camada.

Compreendendo-se que a polvora devesse ser medida mais ou menos vezes conforme a temperatura de dia e a estação.

Não verá a polvora ensuage-se num dia, de inverno, a operação não se ultima em menos de dois ou três dias. O ensuage ao ar livre, embora econômico, exige grandes espaços, bem resguardados, e sobretudo, vem a desvantagem de não poder funcionar senão em dias de sol. Resulta d'aquele ver-se a fábrica forçada a conservar as polvoras humedas por muito tempo, o que é um grave inconveniente.

Por estas circunstâncias e para evitar a fábrica da dependência da dependência do sol é preferível o ensuage em estufas.

Estufas. As estufas para o ensuage artificial da polvora acham-se actualmente reduzidas ao um pouco número de tipos. Todas elas assentam sobre um princípio comum que consiste em fazer atravessar uma camada de polvora de espessura determinada, estendida sobre um taboleiro, inclinado ou horizontal, por uma corrente d'air aquecido a temperatura de 40° a 60° pelo vapor d'água ou pela água quente.

É sabido que a quantidade d'água que o ar pode absorver cresce com a temperatura e por isso ruidos ao taboleiro tanta mais humidade quanto mais quente estiver.

O estufa que funciona em Paracana, consiste n'uma casa, guarnecida de taboleiros, formados por um arco de madeira e um fundo de lona, dispostos superiormente uns aos outros. O aquecimento é feito por meio d'água quente que circula em tubos dispostos ao longo das paredes. A humidade que se evolve da polvora escova-se por ventiladores que podem abrir-se ou fechar-se à vontade. Um termômetro regula a temperatura que deve manter-se a 60° C.

No estufa, por metro quadrado de taboleiro ensuage-se num dia de 10 horas.

As estufas aquecidas a vapor exigem maior espaço, por que a serpentina de aquecimento do ar e o ventilador de aço fíllo ficam colocados num compartimento especial como se vê na fig. 19. O vapor conduzido da caldeira por um tubo metálico entra em serpentina e que está alojada no espaço vazio deixado por dois cilindros
concebidos. A extremidade superior do esporo onde se aloja a serpentina comunica com um ventilador de aspirar e a extremidade inferior com um tubo que vai abrir debaixo do taboleiro de enxugo e vai durando até o arroente.

Para obfuzar o ar a atravessar melhor a camada da polvora, uma camisa de nêvoa superiormente em um ventilador lhe envolve completamente o taboleiro.

Método de conduzir a operação. Estendida a polvora sobre os taboleiros e posto em ação o sistema de enxugo, o grao da polvora começa por embasar e tomar-se grega vel. Parece que a humidade afilhando a superfície do grao readily desaparece e brilha de brilho de histeração. Nestas condiçõe não se deve mecher a polvora porque haveria perigo de desmanchalar debaixo da acção do enxugo. Duas horas depois de estar na estufa, a camada de polvora cobre-se aqui e ali de manchas claras e esverdeadas; é isto indício de que começa a enxugar; porque as manchas brancas são erupções enxtas que fazem sair da cor esverdeada das erupções ainda humidas.

Quando aparecem as manchas brancas meche-se então a polvora, primeiro com um rodo em goma demolição, traçando sulcos para renovar a superfície e dar passagem à humidade, depois com as estelas do ancinho restabelecendo a uniformidade da camada de polvora. Uma hora depois meche-se ligeiramente e continua-se o mesmo trabalho até que as diferentes manchas tenham desaparecido completamente, unindo-se então em toda a camada uma cor uniforme esbranquiçada. Recomeça-se que a polvora está enxuta quando engrosada entre as mãos, seja um grao cinzento que não adhcre à polle. Se o grao é negro e gica jogado é meio a polvora não está uniformemente enxuta.

Calibração. A ilustração e o enxugo produzem sempre uma certa quantidade de po, e por isso a polvora antes de ser calibrada, passa-se a primeira de veda. Terminada esta operação, calibra-se, isto é jorja passar por erros cujos orígenes são duma diâmetro tal que se possa operar a separação do grao em relação ao tamanho regularmente que
II
Pólvora prismática e de grosso grão

Generalidades

Antigamente, conheciam-se apenas dois tipos de pólvora de guerra, a pólvora para os armas portátiles e a pólvora para as bocas de fogo; esta última, cujos grãos eram, em geral, de tamanho inferior a 3 mm, servia indistinctamente para as bocas de fogo de todos os calibres. Mas o uso que aumentaram consideravelmente os calibres e o peso dos projéteis, a antiga pólvora Artilleria, empregada em grandes cargas, tornou-se muito viva e perigosa, devido ao ponto de vista de conservação das bocas de fogo. Pensou-se logo, naturalmente, em modificar o tamanho do grão, dando conjuntamente a pólvora suas qualidades essenciais, que eram indispensáveis nas novas condições de tiro e de carregamento. Estas qualidades são a acção progressiva e a regularidade de combustão.
Ação progressiva. Quando se queima um grão de seoulvora debaixo de uma pressão constante, a superfície de inflamação diminui à medida que o grão se combina: o desenvolvimento de gases, máximo no princípio, vai sendo sucessivamente menor até ao momento final de combinação. Resulta do que, para o caso do tiro das bocas de gueixa, atingindo o aumento de velocidade de combinação devido ao aumento de pressão interno, que a carga fornece a maior parte da sua força no primeiro momento de desaceleração, quando o projétil se acha ainda em ressonância pelo menos, animado de uma pequena velocidade. O que convém, portanto, é uma seoulvora que não emita quando se combina dentro de boca de gueixa, senão uma pequena quantidade de gases para vencer a inércia do projétil, mas que forneça depois quantidades cada vez maiores à proporção que o movimento se acelera. Uma seoulvora nestas condições dir-se progressiva.

Toda a seoulvora homogênea, de grande densidade, pode ser supor-se que adquirir camadas sucessivas, concentricas, e, na realidade, uma seoulvora progressiva, por que a velocidade de combinação cresce muito rapidamente com a pressão desenvolvida pelos gases, no interior das armas, e por isso compensa esuberantemente a diminuição da superfície de inflamação.

Regularidade de combinação. A regularidade de combinação da seoulvora consegue-se com grande facilidade por meio dos grãos moldados. Pode também chegar-se ao mesmo resultado com o auxílio de um encasque e granulação convenientes. Se considerarmos o tempo que um grão de seoulvora leva a arder, como esse tempo é sempre igual ao que levaria a arder a esboeira insersível na menor dimensão do grão, é claro que todos os grãos de uma carga se comportarão na combinação como grãos iguais entre si, logo que sejam obtidos por uma granulação conveniente de uma pasta de encasque que tenha por espessura essa dimensão mínima.

Quanto à lei da emissão dos gases, no interior da boca de gueixa, essa depende da superfície inicial de inflamação e do número de grãos contidos em cada quilograma de seoulvora.

Se pela granulação regular conseguirmos obter uma seoulvora cujas cargas apresentem, sempre, termo medio, um número constante de grãos, o que é fácil de realizar para
cargas tão grandes como são hoje os dos grossos calibres, ter-se-á na lei da produção das
gunias, uma constante, comparável à que daria uma carga composta de granos iguais em
triângulo.

Deve-se ao general Rodman a glória de ter demonstrado a influência do tamanho do
grão da pólvora nas diversas condições de fogo. As diversas experiências do ilustre gene-
ral dos Estados Unidos conduziram ao resultado seguinte: Que a pressão na alma
da boca de fogo diminui à proporção que o tamanho do grão aumenta e que as
velocidades de piqueiro conservam ao mesmo tempo por um aumento de carga.

Esta conclusão notável foi o ponto de partida para o emprego das pólvoras progressi-
sivas nas bocas de fogo de grosso calibre. As pólvoras progressivas actualmente aprop-
sadas pertenecem a alguns dos tipos seguintes.

1. Pólvora em que os grãos são atravessados por um ou mais canais, cuja super-
fície interior de combusção aumenta quando a superfície exterior do grão diminui.
O tipo desta pólvora acha-se representado na pólvora prismática fabricada em
Barearenos.

2. Pólvora comprimida, formada de grãos agglomerados por uma pressão sufici-
ente para dar às cargas das bocas de fogo uma forma determinada. A pólvora
em rodas vasadas que constitui a carga dos cartuchos metálicos das forças granue-
rosas de 5 e 7 pertence a esta categoria.

3. Pólvora formada de grãos grossos e duros, com forma regular ou irregular. A pol-
vora AA fabricada em Barearenos representa este último tipo.

III

Pólvora de grosso grão - AA

As pólvoras podem obter-se ou pelo processo das galgas ou pelo processo revolu-
cionário. Este último consiste em gerar a vitrificação e mistura dos componentes en-
tre si em um sistema tratando da pólvora ordinária e procedendo ao encaixe na forreia
hidráulica. Pode também fabricar-se a pólvora em pregando simultaneamente os dois processos. É isto o que se faz tanto no fabrico da pólvora AA como no degrau
metal.

Fabrico da pólvora AA. A composição das massas tocadas é a seguinte:
Fare-se a composição binaria, tomando 20º de enxofre e 32º de carvão e leve-se ao triturador. A operação dura 4 horas dando 8 ou 9 movimentos por minuto. A carga de 200 kg de enxofre é de 80º. A composição depois de triturada, passe-se à peneira de telaga e arame.

Composição ternaria. Pesam-se tarefas de 23º tomando

<table>
<thead>
<tr>
<th>Composição binaria</th>
<th>Salitre</th>
<th>38,5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25,5</td>
<td>6,5</td>
</tr>
</tbody>
</table>

O salitre reduzido a pó fino, circunda-se previsivelmente à mão e esfriou-se depois a mistura, remoendo tudo numa colher e revolvente bem à pá. Numem-se here 6 a 7% de água e revolvice-se ainda grosseiramente à mão.

Encasqueiras galgas. Preparado assim a tarefa, esteve-se com igualdade no pinto de engenho que entra logo em movimento. O encasque dura 2/2 horas.

Durante os primeiros 5 minutos, as galgas tem frequência velocidade, mas passado este tempo o seu movimento é de 6 voltas por minuto. De meia em meia hora passou-se regas mais ou menos abundantes conforme a serão da massa.

Cinco minutos antes de terminar a operação, modera-se o movimento das galgas de modo que haja de 1 ou 2 voltas por minuto, a fim de que a ação de cada galga se exercia demoradamente sobre a massa e a junto dela bem.

A massa retirada das galgas demora no depósito até ter perdido o excesso de humidade e adquirir a serão conveniente para ser granizada. Parecemos que seria melhor regular as regas de modo que a massa ao sair das galgas viesse ligeiro na serão própria para sofrer a granização, sem empostar nem dar muito pó verde ou burgau em seraria.

Primeira granização. Esta primeira granização pode fazer-se no granizador Rejebue ou no granizador ordinário. Em geral, faz-se no granizador ordinário, armado com crivos de 3 e servindo o Rejebue como rolador para reduzir a granão muito dos o burgue que não foi convenientemente granizado.
Encasque na prensa hidráulica. O pó e o grao obtidos são deutados num caixilho e humedecidos com 4 a 5% d'água, metendo-se bem toda a massa para que fique uniformemente humedecida. As estes condizem é submetida à prensa hidráulica. Para isso, assenta-se no meio do prato inferior da prensa em A Fig. 20 uma lamina de cobre e sobre esta um caixilho de madeira tendo altura 5 m. 0 e dimensões convenientes em comprimento e largura, para que a massa sofra uma jor州 são de 32 kg de centimetro quadrado. O caixilho deve ter interiormente uma ligeira forma de tronco de pirâmide, para se poder manobrar sem desarranjar a massa. Colocado, como dissemos, o caixilho sobre o prato da prensa inclui-se a pó deixando-a massa que deve ser compactada, rareando-se com uma rega e tirando-se o caixilho com todo o cuidado para não desarranjar o prisma de jorunda que gira sobre a lamina de cobre. Sobre este primeiro prisma coloca-se nova lamina de cobre, sobre esta o caixilho, não bem compactado por meio d'un esquadro assente sobre o prato da prensa, e deita-se nova jorunda d'água e procede-se como se procedeu para o primeiro prisma e assim sucessivamente, até a 24° lamina que cobre o último prisma. Corre-se então o târnico B de madeira, contendo-se bem com as laminais, e em seguida jar-se trabalhar a bomba da prensa, para ter logar a compressão regulada pelo manômetro e pelo acumulador, que não deve ultrapassar 8. A pressão exercer-se sobre a massa durante 15 segundos, ficando de cada vez reduzido a 0,05 kg de compressão, (uma exposição do grao). Terminada a compressão, abre-se a torneira da bomba, o prato desce, afastando-se o târnico B e tirar-se a primeira lamina de cobre, depois a segunda que traz agarrado o casco, que se deixa batendo na lamina com um masso de madeira e resolvendo os bocados do caixilho. Procédese do mesmo modo até tirar a ultima lamina, iste é a primi-
ra que se coloca sobre o prato da prensa.
Este processo de encasque, na fórmula hidráulica, pode dar-se a circunstância dos poros ou cascos, como se denominam na fábrica, não ficarem igualmente forneixos em toda a sua superfície, por que estando lateralmente fásse entorpecidos, deve haver em todo o seu perímetro uma porção de superfície onde a massa fique menos compactada.

Parece-nos que o engaste da caixa, como sejam os inúmeros, onde se coloca a polvora, disposta entre camadas como em Barcarena, deve desse cascos mais homogeínos. Em prove-va é que nos países onde se adopta o sistema seguinte na nossa fábrica de polvora, ao aproveitam uma parte dos cascos, rebarbando-os a uma extensão de 0,10% de largura em cada um dos lados.

Os cascos guardam-se no depósito até que tenham a ser par ou serem granizados.

A granização pode ser feita à mão com entelos e picadeira de cobre sobre uma banca, ou nos granizadores ordinários, o que entretanto tem dado melhores resultados, porque a operação é mais económica e gera-se menos pó verde.

Segunda granização no granizador ordinário. Os caixilhos do granizador são armados com crivos de enro, chamados de GAI cujos orifícios têm 0,008 de diâmetro.

Recole-se o pó e grao, que são pelo originais dos crivos e o que fica dentro do granizador é burgau que vai a rolar. O grao limpa-se do pó que lhe foi de mico e passa-se à lustração.

Lustração em verde. Esta operação faz-se no lustrador Granzer (Leville) que recebe uma carga de 100º.

A lustração em verde dura 12 horas. A polvora lustrada em verde deve ter 1,633 de densidade real.

Encasque. O envaso ao sol tem dado melhores resultados e melhor aparência à polvora. O encasque termina quando a polvora tiver umas 1% de humidade.

Em seguida é limpa o pó que lhe foi de mico e sofre nova lustração.

Lustração em seco. A lustração em seco é feita no mesmo lustrador. A operação dura 2 horas e a polvora deve ficar com 1,680 de densidade real. Para melhor lustro e aumentar a densidade costuma juntar-se a carga do lustrador uma porção de burgau humedecido.
Calibração. Tínham a ilustração em seco final os grãos passados por erros de mão, com originários de 6" e 12" e a polvora de 6" e 12" e lata se for preciso, a fim de dar a velocidade e pressão mais conveniente mas provas balísticas a que tem de satisfazer.
Brotas. Determinou-se-se a densidade real que deve achar-se compreendida entre 1660 a 1686:
Contagem do número de grãos em cada kilogramma deve haver 3700 a 2000 grãos;
A humidade deve ser de 0 a 1,5 por cento.
A velocidade inicial 450-460 m e a pressão na alma das bocas de fogo por centímetro quadrado de superfície deve achar-se compreendida entre 800 a 1000.

IV.
Polvora prismática

A polvora prismática é fabricada pelo processo da AA até a granação dos casos fornecidos pela porção-hidráulica, sendo então os granizadores armados com erros C.
Depois de granizada recolhe-se o grão e umedecê-se com 6 a 7% d'água e entrar a granul no teajo da máquina que produz os prismas.
A forma e dimensão dos grãos da polvora prismática acha-se representada na fig. 24. Os prismas podem ter um ou seis canais, sendo um único canal o diâmetro deste é de 9 a 10 mm.
O quadro seguinte mostra as cargas, as velocidades e as pressões supportadas pelas bocas de fogo, emigrando-se a polvora prismática de um ou seis canais.

<table>
<thead>
<tr>
<th>Carga em Kg</th>
<th>Velocidade de projétil m/s</th>
<th>Pressão em atmosferas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Com 7 canais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>267</td>
<td>4.250</td>
</tr>
<tr>
<td>100</td>
<td>433</td>
<td>2.650</td>
</tr>
<tr>
<td>110</td>
<td>435</td>
<td>2.750</td>
</tr>
<tr>
<td>Com 3 canal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>476</td>
<td>3.540</td>
</tr>
<tr>
<td>130</td>
<td>484</td>
<td>3.840</td>
</tr>
<tr>
<td>135</td>
<td>493</td>
<td>3.950</td>
</tr>
</tbody>
</table>

Fig. 21.
Brossa para a moldação da polvora piramidica. - Constá das peças seguintes:

A - Barramento.
B - Feijão de bronze, contendo a polvora antes de moldada.
C - Rodas dentadas de bronze servindo sistema como eixo D.
E - Carretéis de bronze, montados no veio oco F.
G - Caixa de distribuição, com movimento alternativo rectilíneo horizontal.
H - Mesa de moldação. Contém seis alveolos ou formas de bronze de forma hexagonal regular.
I - Alavanca de solvete, movendo-se em torno do eixo le artiulada ao excentrico central e inferior J. Esta alavanca liga-se por uma das extremidades à caixa de distribuição e a outra extremidade livre é carregada por um peso K.
L - Travessão superior, munido de seis caldeires n correspondentes aos seis alveolos da mesa de moldação; têm movimento rectilíneo alternativo vertical.
M - Travessão inferior, munido igualmente de seis caldeires N que, depois de moldado o prisma, funcionam também como extratores; têm movimento rectilíneo alternativo vertical.
N e P - Biellas articuladas respectivamente aos travessões L e M e ao grande eixo D.

Como se funcionar: O movimento da arvore da oficina transmitido ao veio massico O, introduzido no veio oco F, comunica-se por intermediio das rodas dentadas C e veio D às biellas N e P que fazem em movimento rectilíneo vertical alternativo os travessões L e M. Os excentricos das biellas estão calculados de modo que os travessões têm simultaneamente o mesmo movimento ascendente e no mesmo descende de travessão superior apenas uma parte do movimento simultaneo de travessão inferior, é operado neste sentido, sendo o restante em sentido contrario, isto é ascendente, indo le...
gar com o movimento ascendente seguinte do travessa superior. Ao mesmo tempo que os travessos se moverem os executivos I influencia a elevação I que a sua tampa move a caixa de distribuição H dando-lhe movimento de translação horizontal. O limite deste movimento que corresponde ao ajustamento dos agulheiros da caixa de distribuição com os alveisos da mesa de moldação, é determinado pela queda de peso K.

Suggeriamo que tínhamos enduido o teijao B com a polvora convenientemente preparada para ser moldada e que começava o movimento descendente dos travessos.

A caixa de distribuição A tendo esparado na parte inferior de teijao o complemento do movimento ascendente dos dois travessos, e recebendo nos agulheiros automaticamente a polvora destinada aos futuros prismas, avança para a mesa de mola-
qão H, e logo que a polvora passa aos agulheiros da caixa para os alveios da mesa, aquella recama e vai receber nova carga.

Como os travessos desamalgiam os calcadores H H deixam livres os alveios da mesa de moldação, onde a polvora entra pelo seu próprio peso. Os calcadores H H continuam a descer com o travessa superior, entrando nos alveios surgindo-se as agulhas nos respectivos canais; o travessa inferior muda então de sentido e caminha um pouco para o outro. Resulta que aqui que a polvora conjurando nos alveios da mesa de moldação, segue o ali com a gama de prismas que estão lhe impondo.

Ultimada a conjuracao, o travessa superior sobe continuando neste sentido o tra-
resso inferior que, levando consigo os respectivos calcadores H, conjunto dos alve-
iegos os prismas moldados. No seguinte movimento de avanço da caixa de distri-
buição está assista os prismas da superfície da mesa de moldação sendo recolhi-
eis num recipiente.

Nós agulheiros da caixa de distribuição ficam adaptar-se a sistemas diferen-
tes de anilhas de diâmetro interior successivamente maior, que regulam a quan-
tidade de polvora a introduzir nas matrices onde se moldam os prismas.

Como o agastamente mínimo dos conjuradores, dentre as matrices, e mesmo o mesmo, é claro que para se obterem prismas de densidade sucessivamente maior, se devem empregar anilhas successivamente maiores; bem entendido na hipótese de se emprezarem sempre grãos de cascos obtidos a mesma gres.
são na zona, hidráulica.

Ensangu. Os zíperis colocados em tabuleiros são enxertos ao solo num estágio, até contarem apenas 1\% de humidade.

Provas. Esta polvora submete-se às mesmas provas que a polvora AA, demorando a densidade real ser de 1,75.
Capítulo 4.
Propriedades físicas e químicas da pólvora
Determinação da força balística

I

Propriedades físicas

As propriedades físicas da pólvora se referem ao aspecto exterior, dureza, tamanho do grão, densidade, umidade e homogeneidade e finalmente à quantidade de resíduos sólidos da combusão.

Aspecto exterior. A pólvora ordinária deve apresentar uma cor de ardósia uniforme; se a cor tende para azul ou negro, a pólvora está muito humida ou contém muitos carvões. A cor deve ser perfeitamente uniforme, quando o grão reduzido a pó se observa à luz. Os grãos não devem ser asperos ao toque. A desigualdade de cor indica que a uniformidade da mistura não foi perfeita; as asperidades da superfície denotam uma preparação insuficiente. Pontos brilhantes ou manchas escuras mostram que o salitre esfriou durante o ensaio e que a uniformidade da mistura se acha alterada. A pólvora não deve manchar a mão nem o poço; o contrário indica umidade ou pó. Essa última hipótese verifica-se facilmente passando a mão sobre o pólvora.

Dureza do grão. O grão da pólvora não deve esmagar-se nem reduzir-se a pó quando se aperta na mão ou moderadamente entre os dedos. Em França a prova de dureza, prescrita para as pólvoras de guerra consiste em introduzir 3/4 de pólvora bem limpa de pó, v um barril, que se fecha de outro, e gazelo rolar sobre dois planos de madeira, com inclinação de 15° sobre o horizonte, e ligados a um outro plano horiz
tonal; fig. 23.

Estes planos são guarnecidos de um rebordo e têm reguas de madeira a fas. Se fossem 6 metros a metro de distância. Depois de ter feito rolar 100 metros o barril sobre
os planos, isto é, depois de ter sejado percorrer uma distância de 1000, abre-se, passa-se a polvora e se encontra de seis graus (1200 milhas por centímetro quadrado) e se sai o grao tempo 5º. Ainda se une uma queda de 5º por cento.

Noa Alemanha, contêm-se em colocar 0,2 de polvora num recipiente de ouro, introduzir este num lustrador que se faz girar, durante 1/4 de hora, com a velocidade de 15 voltas por minuto. A perda de peso não deve exceder 1,05 o que corresponde a uma queda de 1,55%.

Tamanho do grão. Para cada espécie de polvora, os grãos devem ter as dimensões regulamentares e serem tanto quanto possível do mesmo tamanho. Deve também o número de grãos contido num determinado peso de polvora estar compreendido dentro de certos limites.

Regulamentado o tamanho do grão para cada espécie de polvora são necessários os dois fios. Uma com orifícios de diâmetro exactamente igual ao diâmetro tipo de grão, a outra com orifícios menores. Peneirando a polvora num fio menor passam os grãos de menores dimensões, passando-se depois na fia na tampa exacta passará o grão de tamanho regulamentar, ficando em cima os grãos maiores.

Densidade. Considerada-se na polvora a densidade gravimétrica e a densidade de real. A densidade gravimétrica é o peso da unidade de volume da polvora, compreendendo os interstícios dos grãos, isto é, o peso em gramas, num litro de polvora não Calcada. Densidade real é o peso específico dos grãos compreendendo unicamente o em contato nos seus poros.

Não existe relação alguma entre a densidade real e a densidade gravimétrica da polvora; polvora tendo a mesma densidade real, têm, em geral, densidades gravimétricas diferentes. Estes dois elementos característicos são forçosamente diferentes.

A densidade real pode dar-nos ideia da qualidade das matérias primas, de valor de brituração e do modo porque se faz o encaixe.

A densidade gravimétrica depende, além disto, do tamanho e gama dos grãos, da natureza e duração da iluminação e finalmente da maior ou menor quantidade de grãos de menor tamanho ou de polvura.

A densidade gravimétrica influi principalmente na velocidade de inflamação,
Determinação da densidade gravimétrica. O modo porque ordinariamente se determina a densidade gravimétrica de pólvora, é achando o peso correspondente a um dado volume. O aparelho de que nos servimos denominamos gravímetro (Fig. 24) é feito de lata, e consiste de um tubo A de forma cilíndrica e de um tubo B de capacidade superior ao tubo, disposto como se vê na figura. No tubo B há um obturador que se abre por meio da alavanca C.

Para fazer o ensaio coloca-se o gravímetro sobre uma superfície horizontal, enche-se o tubo B de pólvora bem seca e em seguida abre-se o obturador. Depois de cheio o tubo e de ter desmontado o tubo A, rasga-se a superfície do vaso A e pesa-se. Do peso obtido subtrai-se o peso do vaso e obtém-se assim o número que representa a densidade gravimétrica. Executa-se esta operação três vezes e toma-se a média. As indicações do gravímetro têm apenas um valor relativo para as diversas pólvoras ensaiadas no mesmo aparelho, o que é fácil de comprender. Contudo este aparelho tem uma certa importância e pode indicar se os processos de fabrico imprimem um ou outro tipo de pólvora as condições exigidas, na tocento e encarnaco, instrução, e gravidade. O que é necessário é que os limites de tolerância nas densidades gravimétricas não sejam muito largos a ponto de prejudicarem as conclusões que se tiram da operação.

Os limites das densidades gravimétricas das nossas pólvoras são os seguintes:

<table>
<thead>
<tr>
<th>Pólvora</th>
<th>MM</th>
<th>850 a 900 gramas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td>850 a 1000</td>
<td></td>
</tr>
<tr>
<td>PSF</td>
<td>850 a 1000</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>850 a 900</td>
<td></td>
</tr>
<tr>
<td>FN, FN</td>
<td>880 a 1000</td>
<td></td>
</tr>
</tbody>
</table>

A densidade gravimétrica de qualquer quantidade de pólvora não deve diferir de 50 gramas de densidade média adotada para a pólvora da mesma qualidade, ou...
bricada no semestre anterior. O gravímetro de que garem uso na Alemanha, usa
mo na Inglaterra, tem de capacidade 33 litros. Almas instruções publicadas na
Baviera em 14 de março de 1828 giam a densidade média em 23,250 com uma
tolerância de + 0,025, isto é, para um litro 0,350 com a tolerância de + 0,019. Na
Rússia e na Italia também os limites de tolerância são menos largos do que os
estabelecidos na fábrica de Bararema.

Método empregado na determinação da densidade real da pólvora.

A densidade real de um corpo qualquer é a relação entre o peso do corpo e o peso
de um volume igual de água distilada, no seu máximo de condensação. Empregou-se
para esta operação a água saturada de salitre; o álcool absoluto; a água jorra (com
um involucro de coloquium sobre a pólvora) e finalmente o mercurio.

Na França, Rússia, Inglaterra, Itália emprega-se o mercurio, na Alemanha e
na Austria servem-se do álcool absoluto e da água jorra empregando a camada de
coloquium sobre a pólvora.

Nos laboratórios apenas do emprego do álcool absoluto e do mercurio.

Determinação da densidade da pólvora por meio do álcool. Pode proceder-
se de dois modos: ou medição do volume do líquido, que resulta da introdução dum
peso determinado de pólvora, ou tomando o peso do líquido deslocado pela mesma
pólvora. Empregou-se em geral o 1º método.

1º Pelo aumento do volume. Deta-se um certo volume d'álcool absoluto (36°
geralmente) num provetê perfeitamente graduado em decímetros cúbico, sobe-se o provetê para que o álcool se não volatilise, espalhado alguns minutos,
quando todas as gotas adherentes às paredes tenham descido, faz-se a leitura do vo-
lume. Introduzem-se 16 grammas de pólvora bem seca e limpa, servindo-nos
para isso dum gumil de colo bastante largo e comprido e faz-se nova leitura. De-
vindo o peso da pólvora expresso em grammas pelo aumento do volume do li-
quido expresso em centímetros, temos a densidade real da pólvora porque

$$ B = 15 \log \frac{B}{V} $$

Determinação da densidade real da pólvora pelo mercurio. A 57° 15
representa o densímetro de Bianchi e McCallet, serve para todas as espécies de pólvora.
vora e por isso é o mais geralmente usado.

O densímetro consta essencialmente de um vaso A, com vaso para as polvora, ordinaris, e de ferro para os de gáz muito grosso. O vaso A tem duas tubos, lados, quase, ao interior, onde ligam as gázes B e C quase, ao exterior, dos respectivos toméira e r, havendo nos cantos da junção das gázes que funcionam de selos.

O densímetro na junção inferior C é de ranura, e superior B é de rede metálica.

A peça C recebe um tubo afilado, que mergulha na mercurio ento no toméira E: A peça B, está em comunicação com um tubo barométrico F convenientemente disposto e resguardado.

O tubo barométrico tem na base a toméira e na parte superior uma virela onde ajusta um tubo de mercúrio, de alumina metálica que jaz o espargelho em comunicação com a máquina pneumática.

A operação consiste em pesar o vaso A cheio de mercurio. Depois, tendo lhe introduzido um determinado peso de polvora, gazar uma segunda vez, conhecendo a densidade do mercurio e temperatura da experiência, calcula-se facilmente a densidade da polvora.

Método de funcionar. Estando montado o espargelho e em comunicação com a máquina pneumática, fechar-se a toméira inferior e ouvir-se da vareia e desca-se entrar o mercurio, trabalhando sempre a máquina até que isso sujeito, isto é, até chegar a graduação 11 maravede no tubo barométrico. Fechar-se ento a toméira e desca-se entrar o ar dentro do espargelho desligando este da máquina pneumática. A entrada de ar é para confirmar bem o mercurio dentro do vaso A. Fechar-se estes toméiras superiores, desencapar-se o vaso A em B e pesar-se.

11.
Seja \(P \) o peso do vaso cheio de mercúrio. Despeje-se o vaso, introduz-se no vaso determinado peso de polvora, termo-se a colocar na sua respectiva posição e agarre-se de novo como da primeira vez. Sendo \(\alpha \) o peso da polvora \(P' \) o peso do vaso, mercurio e polvora, ter-se-á

\[
P' = P - \alpha D_v + \alpha
\]

Chamando \(D_v \) a densidade do mercurio à temperatura \(T \) marcada pelo termômetro que se mergulha na tina \(E \) e resfriada à água distilada com a mesma temperatura \(T \), o volume do mercurio deslocado, igual ao volume da polvora introduzida no vaso \(A \), temos

\[
v = \frac{P - P' - \alpha}{D_v}
\]

Ora a densidade da polvora é dada pela fórmula

\[
d = \frac{\alpha}{v}
\]

Substituindo o valor \(v \) teremos

\[
d = \frac{\alpha}{P - P' - \alpha} = \frac{P_v \alpha}{P - P' + \alpha}
\]

Resta só determinar a densidade do mercurio \(D_v \) à temperatura \(T \).

Supondo o mercurio puro a sua densidade é \(D_v = 13,596 \)

O valor de \(D_v \) dado pelos livros de Physica é:

\[
D_v = D_o \left(\frac{5550}{5550 + T} \right) = 13,596 \left(\frac{5550}{5550 + T} \right)
\]

sendo ainda \(T \) a temperatura do termômetro que está mergulhado na tina do mercurio.

A densidade \(D_v = 13,596 \) refere-se ao mercurio puro, portanto puro, no entanto, como o processo é exato ainda que o mercurio não esteja nesse estado de pura, convirá achar diretamente a densidade \(D_v \) neste momento da operação.

Para isso o servimos do aparelho (fig. 26) que consta de um graso \(A \) e um junco \(B \) ajustado em \(C \) e munido de uma roda \(D \).

O graso \(A \) tem um traço \(E \) para indicar a altura até onde o líquido se atingirá. Este traço chama-se linha de gê. Enchere-se o graso de mercurio até a linha de gê e gosse-se.

Se chamarmos \(\xi \) o peso do graso que posteriormente se determina e \(P \) o peso do vaso de chio de mercurio, o peso do mercurio será \(P - \xi \).

Procede-se do mesmo modo encheendo-se o graso de água distilla-

a e chamando \(P' \) o peso do graso com água têmos que o peso
Esta será \(P'_{-\theta} \) logo a densidade do mercurio será \(\frac{P_{-\theta}}{\theta} \). Na que a densidade dos corpos deve ser referida à da água no seu maior estado de condensação e necessário em seguir a relação anteriormente um coëfficiente de correção \((1+\theta)\) sendo \(\theta \) a dilatação da água às diferentes temperaturas, partindo de \(4^\circ \).

A densidade do mercurio à temperatura \(X \) será

\[
D_X = \frac{P_{-\theta}}{(1+\theta)P_{-\theta}}
\]

Os valores de \((1+\theta)\) estão representados na seguinte tabela.

<table>
<thead>
<tr>
<th>((1+\theta))</th>
<th>((1+\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-2)</td>
<td>1,0003077</td>
</tr>
<tr>
<td>(-1)</td>
<td>1,0002138</td>
</tr>
<tr>
<td>(0)</td>
<td>1,0001269</td>
</tr>
<tr>
<td>(1)</td>
<td>1,0000331</td>
</tr>
<tr>
<td>(2)</td>
<td>1,0000000</td>
</tr>
<tr>
<td>(3)</td>
<td>1,0000000</td>
</tr>
<tr>
<td>(4)</td>
<td>1,0000000</td>
</tr>
<tr>
<td>(5)</td>
<td>1,0000000</td>
</tr>
<tr>
<td>(6)</td>
<td>1,0000000</td>
</tr>
<tr>
<td>(7)</td>
<td>1,0000000</td>
</tr>
<tr>
<td>(8)</td>
<td>1,0000000</td>
</tr>
</tbody>
</table>

Humedade e hygrometricidade. A água absorvida pelos grãos da pólvora produzirá variar as suas propriedades físicas. O salitre efloresce e altera-se a intimidade da mistura. Se é grande a quantidade de água absorvida, o grãos aumenta de volume, torna-se menos denso e losar-se, depois de se ter desformado, ficando reduzido a massa.

Em quanto a superfície do grão não apresenta pequenas aspirações de ar branco, que são eretores de salitre que eflorescem, a pólvora não está desorganizada e pode beneficiar-se, restituindo-lhe as suas propriedades, fazendo-o secar lentamente. A densidade e a dureza do grão diminuem um pouco neste caso. Se o salitre efloresce, a intimidade da mistura dos componentes fica destruído e a pólvora não retoma pelo mesmo nem sua...
Densidade nem sua força balística. Considera-se pólvora avariada onde se extraiu em tão o salitre, para o utilitar de novo, submetendo a massa à lixiviação.

Prova de humidade. Esta verificação tem por fim determinar a quantidade d'água contida nos grãos da pólvora e deduzir d'ali as propriedades balísticas, se a pólvora sae diretamente da fábrica, ou se seu estado de conservação se tem já deteriorado nos armazéns.

Pode operar-se sobre 10 gramas de pólvora, estendendo em camada de pequena espessura sobre uma gota de cola metálica, consistente a por espaço de 24 horas a uma temperatura aproximadamente de 60° em uma estufa de ar, munida d'um termômetro regulador de Schloessing. Depois de pesada a pólvora coloca-se na estufa e repesa-se de 2 em 2 ou 3 em 3 horas até que duas pesagens consecutivas sejam constantes. A diferença de peso, antes e depois de seca indica a quantidade d'água contida na pólvora.

Para as provas comparativas feitas em fábrica corrente submete-se por 2 ou 3 horas ao calor da estufa, que deve ser tanto de 90° e pesa-se de hora a hora até os pesos serem constantes. Na Prússia seca-se 4/5 de pólvora em banho maria mantendo a água em ebulição por espaço de 30 minutos, e pesa-se a pólvora depois de a ter-se arrefecer fora da acção do ar. Noutros países procede-se como na Prússia, esquecendo secar a pólvora ou em presença d'uma solução concentrada d'ácido sulfúrico ou na máquina pneumática.

Prova de hygrometria. Esta prova tem por fim determinar a razão com que a pólvora absorve a humidade, bem como a quantidade d'água que pode absorver, antes de avariar, isto é, a fadigabilidade que possui de se conservar em bom estado.

Pode proceder-se tomando 100 gramas de pólvora, estendendo-as em camada de 0,002 de espessura no fundo d'un jarro com rebordo, colocando o próprio sob um balde cheio d'água, cuja superfície livre seja suficiente do jarro. O jarro deve ficar 0,027 acima da superfície da água. Abriga-se tudo com uma caixa de madeira espessa, coberta exteriormente com peles de carneiro e coloca-se n'um lugar fresco e livre de correntes d'ar. Pas-sadas 24 horas pesa-se a pólvora e nota-se o aumento de peso: registre-se a operação de pois de 2, 4, 6, 8 e 10 dias até que a pólvora se ache completamente deteriorada, toman-
do sempre nota o resultado da pesagem e das diferentes circunstâncias da deterioração observada.

Na Alemanha, coloca-se a pólvora num subterrâneo húmido, ou sob um balde d’água hermeticamente fechado, deixa-se permanecer ali meio ou menos tempo, conforme a temperatura do lugar, e comparece-se depois o aumento de peso da pólvora submetida à experiência com o de uma pólvora normal submetida à mesma prova.

A prática tem mostrado que o processo não é rigoroso, porque operando-se simultaneamente sobre cinco amostras de uma pólvora normal, colocadas nas mesmas condições, e presas com intervallos diferentes, têm-se encontrado nas pesagens grandes anomalias. Isso explica-se, porque se a temperatura desce, o vapor da água precipita-se em parte em mocho a pólvora, e se se eleva, sucede o contrário, a humidade condensada vaporiza-se, pelo menos em parte, de sorte que as indicações obtidas por esse método não têm regularidade alguma.

Resíduos da combustão. Os resíduos da combustão que produzem o encrastamento dos armas, parece-se dependem do desenvolvimento da mistura íntima e das diversas circunstâncias do gabinete cuja influência não é ainda hoje bem conhecida.

O modo mais rigoroso de determinar os produtos da combustão da pólvora é por meio da análise química, mas em gabinete corrente, não há necessidade de processos tão rigorosos. Um processo grosso, ordinariamente emjogado, consiste em queimar sob uma gole de gás mol uma pequena porção de pólvora; está deve arder sem deixar resíduo, nem manchar nem combinar o goazel.

De gencas, manda-se nevas de menos excesso de carvão imprecisamente triturado; juntos amarellos são deviados ao encofre e se deixam-se dali as mesmas conclusões; somos brancos cristallinos podem provir de impurezas da salitres ou de mistura imprecisa. No caso de se inflamar o goazel é indicio de que na pólvora faltam elementos combustíveis.

II

Propriedades químicas

Os propriedades químicas da pólvora estão intimamente ligadas às suas propriedades mecânicas, que compreenderemos de baixo ao mesmo designação não só a
sua análise mas também os fenômenos que se referem à inflamação e combustão.

Análise da pólvora: Para conhecer a quantidade de salitre, enxofre e carvão que entram no doseamento de uma baga de pólvora, procede-se do modo seguinte:

Determinação do salitre: Tomam-se 10 gramas de pólvora reduzida a pó bem-secos e jerrum-se em água destilada. Depois decanta-se a água sobre um filtro, e respeita-se a operação até que todo o salitre tenha sido dissolvido. Concentram-se depois as águas e obtém-se o poço do salitre.

Determinação do enxofre: Tomam-se outras 10 gramas de pólvora nas mesmas condições, introduzem-se num balão, junta-se-lhe ácido nitrogênico e coloca-se sobre um bico de gás, e adicionam-se ao líquido, por pequenas porções, chlorato de potássio para ozx. Se o enxofre, depois de sair-se no estado de sulfato de barita e passarmos salário enxofre. O carvão obtém-se por diferenças.

Inflamação: A inflamação da pólvora produz-se pelo choque, pela elevação de temperatura e pelo contacto dos corpos inflamados ou em ignição.

Em todos os casos o estado físico da matéria exerce uma influência considerável sobre a rapidez do fenômeno. As experiências de Hubert de Longe e de Sanguinato demonstraram que a inflamação da pólvora se produz pelo choque do ferro sobre o ferro, do ferro sobre a lata, do lata sobre a lata; menos facilmente, porém, pelo choque do ferro sobre o cobre ou do cobre sobre o cobre.

Segundo experiências inglêseas, a pólvora inflama-se ainda pelo choque do bromo sobre o cobre, do ferro sobre o marfim, do quartzo sobre o quartzo, do chumbo sobre o chumbo e do chumbo sobre a madeira. A explosão produz-se raras vezes pelo choque do cobre sobre a madeira e raramente pelo choque da madeira sobre a madeira. O interjúcia da um simples gota de pezuel ou um grande fio de arco entre os dois corpos substituídos ao choque é bastante para favorecer a inflamação. Experiências executadas em Bouchet sobre os gavilos do explosão tão frequentes nos engenhos de galgas, têm dado os resultados seguintes: Uma galga de ferro fundido girando com a velocidade de 20 voltas por minuto sobre um jarro também de ferro fundido deixando-se sabais, pólvora em pasta encaseada, juntamente com bombas de madeira, ferro ou cobre, não produz explosão, mas a pólvora inflama-se imediatamente pela interposição da uma.
pequena quantidade de matéria siliciosa reduzida a pó fino, d'um pedaço de vidro ou tijolo. Uma galga de bronze trabalhando sobre prato de madeira, só, depois de 5,000 voltas, é que produziram a explosão d'uma pequena quantidade de pólvora misturada com 20% de matéria siliciosa.

Bela elevação de temperatura. Experimentos muito recentes de Horsteg têm sido a temperatura de inflamação da pólvora em 315°F. Violette determinou igualmente a temperatura de inflamação de diversas pólvoras e achou os resultados seguintes:

<table>
<thead>
<tr>
<th>Especies de pólvora</th>
<th>Temperatura de inflamação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moita</td>
<td>270° 265°</td>
</tr>
<tr>
<td>Guerra</td>
<td>276° 266°</td>
</tr>
<tr>
<td>Caça sôbreina</td>
<td>280° 268°</td>
</tr>
<tr>
<td>Caça sôbreina</td>
<td>320° 270°</td>
</tr>
</tbody>
</table>

Violette atribui esta divergência de temperatura à influência do dosselamento, mas é mais natural admitir que as pólvoras menos inflamáveis são aquelas em que a trituração é mais prolongada, o envolver de sablé, que gradualmente se tem depositado sobre as partículas de enxofre e carvão, garante tanto melhor da inflamação quanto a trituração tem sido mais prolongada, e, não havendo restos ou gusa deste envolver, a descompressão não se produziria antes de 400°F, temperatura a que o carvão derrubado é sablé. Para as pólvoras mal trituradas ou deterioradas pelo gusamento, as temperaturas aproximam-se de 250°F, temperatura da inflamação de enxofre ao ar livre.

Belo contacto dos corpos inflamados ou em ignição. Os corpos inflamados só produzem a explosão da pólvora quando elevados a uma alta temperatura. Uma luzeira pode estar em contacto com a pólvora durante alguns segundos sem provocar a descompressão. O algodão pólvora, inflamável sobre uma camada de pólvora em grao distribuída, deixa a intiça, por causa da excessiva resistência de combustão. O modo mais prático de inflamação da pólvora consiste em pólvora em contacto com um corpo em ignição. O contacto dum gus metálico tornoço rubro pela passagem dum corrente elétrica bem como a faísca elétrica provoca a inflamação da pólvora.
Velocidade de inflamação. A velocidade de inflamação de uma carga de pólvora depende essencialmente da pressão exercida no interior da carga. Biobert, após suas experiências, chegou as conclusões seguintes:

1. A pólvora em pó arde muito mais lentamente do que a pólvora em grao.

2. A velocidade de inflamação das camadas de grao de diferentes tamanhos está aproximadamente na razão inversa das raízes quadradas dos diâmetros dos graos.

3. A razoável de inflamação é menor para as pólvoras fabricadas com carvão azedo que com carvão fresco; para as pólvoras ilustradas e densas do que para as não ilustradas e esparram densas.

Combustão da pólvora. A inflamação da pólvora determina a combustão desta, acompanhada algumas vezes de explosão. O combustão da pólvora em vasos fechados opera-se sem estampido; dá lugar à produção de gases e resíduos sólidos, cuja natureza e composição se pode determinar pelos processos de análise cinética. A explosão propriamente dita ou a detonação produz-se sempre que a combustão se efectua em um recipiente de que, pelo menos uma das paredes não oferece resistência, suficiente à expansão dos gases gerados.

Velocidade de combustão. A pólvora arde com uma velocidade que depende essencialmente da pressão sob a que se encontra a combustão. Deste modo, Biobert, numa série de experiências sobre a combustão da pólvora ao ar livre, observou que a matéria era reduzida a uma massa de compimento conhecido, colocada verticalmente tendo as faces laterais em tinta com uma substância gordurosa. Estas precauções asseguravam a regularidade da combustão, cuja duração se observava por meio de um cronômetro de Praguet, dando até décimos de segundo. Biobert chegou às conclusões seguintes:

1. Para uma determinada face de encaixe, a combustão é uniforme.

2. A duração da combustão dum prisma é, com efeito, proporcional ao seu compimento.

3. A duração da combustão dum prisma é independente da sua seção.

O aqui resulta a uniformidade da combustão para um grao de superfície curva.

4. Em igualdade de circunstâncias, a velocidade de combustão está na razão inversa da densidade. O produto da velocidade de combustão V pela densidade real d e uma constante característica C da pólvora, definida pela relação
seguinte: \(vd = C\)

As constantes \(C\) medem as velocidades de combustão das diferentes polveras com densidade igual.

A velocidade de combustão pode ser influenciada:

Pelo Secameamento. Um excesso de salitre no Secameamento diminui a combustão da polvora. As impurezas do salitre produzirão o mesmo efeito, por causa da humidade que contêm. Um excesso de carvão e, em certos limites, um excesso de europa, aumentam a velocidade de combustão.

A humidade da polvora constitui, juntamente com a densidade, o elemento fundamental da velocidade de combustão.

O valor da característica \(C\) diminui quando a humidade aumenta como se vê no quadro seguinte:

<table>
<thead>
<tr>
<th>Espécie de polvora</th>
<th>Proportação de humidade por 100</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polvora de guerra</td>
<td>0,75</td>
<td>0,134</td>
</tr>
<tr>
<td></td>
<td>1,50</td>
<td>0,168</td>
</tr>
<tr>
<td></td>
<td>2,50</td>
<td>0,145</td>
</tr>
</tbody>
</table>

O enxugo ao sol aumenta notavelmente a velocidade de combustão.

Processo de fabrico. A velocidade de combustão parece tanto maior quanto mais energica é a titulação, sem contudo ser muito influenciada pelo euração Festa.

III

Determinação da força da polvora

Os aparelhos empregados para medir a força da polvora pertencem a duas categorias:

1°) Provetes;

2°) Aparelhos electro-balísticos.

Os provetes podem ser as bocas de fogo ordinárias e especialmente o marteiro provete. Provetes de mola, provetes de peso e provetes de reação.

Dessa diferentes aparelhos que pertencem a cada uma das categorias trataremos apenas a marteiro provete e ao chronógrafo de Le Boulangé, por serem os instrumentos adoptados para determinar os alcances e velocidades das polveras e em seguida, apresentaremos a determinação das pressões dentro das bocas de fogo.
Mortoio provete. O morteio provete permite medir o alcance do projétil e é por este alcance que se aprecia a força da pólvora.

C'm um morteiro de cerro eado ou de broure, Fig. 27, que atira por um angulo de 45\(^\circ\) um globo de mesmo metal pesando 29,3. A carga do morteiro é de 92 grammas de pólvora.

O morteiro provete da fabrica de Povoa vem as dimensões seguintes:

- Comprimento da alma: 0,2.337
- Diametro: 0,1912
- Profundidade da camara cilindrica: 08,7
- Diametro: 15,5
- Diametro do ouvido: 3,4

Os alcances regulamentares das nossas pólvoras são:

- Pólvora de guerra: C: 220 m
- Pólvora de minas: FF: 250 m
- Pólvora de minas: MM: 150 a 200 m

Hoje o morteiro provete serve só para determinar a força das pólvoras de minas, porque as indicações do inatal instrumento não são aceitáveis no tocante às pólvoras de guerra. Quando se emprega o morteiro deve medir-se cuidadosamente o diametro da alma, o do ouvido e do globo e depois introduz-se-lhe na camara a carga de 92 grammas de pólvora, coloca-se o globo e um estojão no ouvido. O primeiro não se contém nunca, serve só para aquecer o morteiro, mas tanto a camara como a alma deste e o globo são longos e lavados a cada tiro, para evitar que as materiais adherentes às paredes da alma e do globo alterem o vento e ponha sem diminuir o alcance. Os morteiros provetos principalmente os de broure, gastam muito, e estão por isso tão alcances cada vez menores. Compararam-se então as pólvoras submetidas à prova, a uma pólvora normal, pólvora tipo, que se conserva sempre aceiiconada em frascos hermeticamente fechados.

As razões porque não são aceitáveis as indicações do morteiro provete é porque não fornecem resultados directamente comparaveis nas diferentes epocas ao seu emprego. É necessário atender à influência do vento do projétil e ao diametro do ouvido que aumenta com o uso. O morteiro provete considerado como instrumento de
prova para as esferas de guerra, havia uma classificação exatamente inversa: se
que se obtenha pelo tiro destas mesmas esferas nas armas a que são destinadas, o
morteiro é com efeito uma arma de alvo curta, atirando com pequena carga; ora se
ó se obtém bons alcances com um semihumante instrumento é necessário empregar
esferas pesadas e de granito. As esferas pesadas e de grande grau são grandes velocidades.
Explicar-se pelo aumento de alcance do morteiro provê a diminuição de velocidade corres-
pondente nas bocas de gato; portanto, as verdadeiras provas das esferas de guerra
deverão fazer-se nas armas a que são destinadas.

Emprego do Chronôgrafo de Le Boulangé. A fig. 23 representa a dispo-
sição do aparelho que existe na Escola do Exército para determinar a velocida-
de do projétil de qualquer arma de gato.

Há carreiras de tiro estão situadas em M, a arma carregada com a carga regular;
mento: em N e O dois alvos formados em um quadro de madeira, guarnecidos de
seis de arame muito finos e tão juntos que a bala não possa passar sem os cortar.
Assim, quando o fio expõe-se, o fio expõe-se, o fio expõe-se.

A parte superior do jarro há um electro-imã E donde pode ficar suspenso
o chronômetro K, que consta chun cilindro de ferro revestido de tubos de projétil. Quan-
do uma suspenso regular a verticalidade do jarro B pelo contato de uma esfera lateral.

Em C há outro electro-imã donde pode ficar suspenso e registrador H que na queda,
e recebido por um tubo I.

O registrador H quando cai solta um estêcolo J que dás um golpe no tubo de projétil
que reveste o chronômetro, se está-se deslocar na mesma ocasião.

O chronômetro quando se desloca cai dentro do saco P: um disjuntor K permite
interromper as correntes elétricas que são fornecidas por meio de pilhas de Bohun
comunícando o polo zincico com o disjuntor em R e o polo carvão com o primei-
ro alvo N, passando deste pelo giro B para o electro-imã E vindo depois seguir ao
disjuntor K. No primeiro alvo N dividir-se a corrente e segue o caminho B, vindo
as electro-imuns G e dahi ao disjuntor, ficam
em debaixo do mesmo pessor onde está a
corrente S.

Estando tudo disposto e fechado o disjuntor K
as duas correntes SS' activarão os electro-imuns
FG, onde poderá fixar suspensos o regis-
trador e o chronometro, como se vê na sigu-
ra. Princípio o trabalho com o aparelho fa-
xendo uma disjunção, o que se consegue a
soltando a mola que abre o disjuntor; ao
mesmo tempo cae o chronometro XX e re-
registrador H; este solta o cutelo J que gira
o golpe e no caminho de sua pata. Repetem-
se as disjunções, regulando convenientemen-
te as correntes com as armaduras dos ele-
ctro-imuns, até que se consigam os golpes
sensivelmente à mesma altura. Lago que
isto se tenha obtido, arma-se o cutelo sus-

gende-se o registrador e o chronometro e dá-se o tiro.

A bala, contendo o giro no primeiro alvo N, solta o chronometro, e contando depois. Se no segundo alvo O solta o registrador: este solta o cutelo que agarrando ainda naque-
sa o chronometro e faz-lhe um segundo golpe E. A distancia SE = (A+L)-(a+b)
corresponde ao tempo T que a bala leva a percorrer o espaço compreendido entre os dois alvos, tempo que se calcula pela fórmula conhecida daquela de queda de um grano:

$$A + L = \frac{A + L}{2} \times T^2$$
$$a + \ell = \frac{a + \ell}{2} \times T^2$$
$$T = \sqrt{\frac{A + L}{4.90}}$$
$$\ell = \sqrt{\frac{a + \ell}{4.90}}$$

Come se vê na figura, A e a são alturas constantes sobre o ente, contadas de posições fixas e marcadas no cronógrafo, bastando por isso medir em cada tiro as distâncias L e ℓ, com uma régua dividida em milímetros tendo número de dez milímetros. As alturas constantes no cronógrafo da Escola de Exercícios são:

$$A = 0,6364 \quad a = 0,5000$$

Registadas as leituras L e ℓ, de uma série de tiros é fácil calcular os tempos pelas fórmulas antecedentes. Com o tempo $T = T - t$ em cada tiro determina-se a velocidade da bala na distância compreendida entre os dois alvos NO pela equação conhecida do movimento uniforme:

$$v = NO = \frac{v}{t}$$

Dadas velocidades medias pode passar-se para as velocidades iniciais pela seguinte fórmula balística:

$$V = v + \sqrt{\frac{eD^2(4.35 - v)}{P} \times M}{N}$$

Em que V representa a velocidade inicial; v a velocidade do projétil à distância R da arma de gosso; P peso do projétil expresso em kilogrammas; D diâmetro da alma da arma expresso em metros; N função da temperatura; T da atmosfera na ocasião do tiro, expressa em graus centíssimas de um termômetro seco; M função da altura barométrica H expressa em milímetros; ℓ tensão T e das temperaturas T e ℓ' sendo ℓ' lido no termômetro molhado ao mesmo tempo que ℓ na ocasião do tiro.

As tablas A, B e C encontram-se calculados os valores de t na taboa A e na B os de $t - \ell$ para as diversas temperaturas T onde se tira T com que entramos na taboa C e achamos o valor de M correspondente.

(*) Existe hoje um novo modelo do cronógrafo de E. Boulanger mais aperfeiçoado.
<table>
<thead>
<tr>
<th>Taboa A</th>
<th>Taboa B</th>
<th>Taboa C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonte</td>
<td>Valores</td>
<td>Diferenças</td>
</tr>
<tr>
<td>rar</td>
<td>se</td>
<td>en</td>
</tr>
<tr>
<td>10</td>
<td>9.06</td>
<td>3.56</td>
</tr>
<tr>
<td>9.07</td>
<td>3.76</td>
<td>9.19</td>
</tr>
<tr>
<td>9.08</td>
<td>3.85</td>
<td>9.39</td>
</tr>
<tr>
<td>9.20</td>
<td>3.72</td>
<td>10.70</td>
</tr>
<tr>
<td>9.21</td>
<td>3.71</td>
<td>10.85</td>
</tr>
<tr>
<td>9.22</td>
<td>3.70</td>
<td>11.00</td>
</tr>
<tr>
<td>9.23</td>
<td>3.69</td>
<td>11.15</td>
</tr>
</tbody>
</table>

E'extracto das taboa publicadas pelo Observatorio meteorologico para uso de pessoes.

merto 2º Augusto.
95

Sugestivamos que determinamos a velocidade média no tiro ao redor com arma Swaffer e pretendemos achar a velocidade inicial servindo-nos da fórmula (1)

Nesta como temos $D=0,011$; $n=18,675$; $P=0,0345$. E sugestivamos que a velocidade do projétil a distância x da boca do fogo era $V=367,7$.

Por meio das taboa A, B e C vamos achar os valores correspondentes de M e N tendo-se previamente notado, na ocasião do tiro as temperaturas e t nos termômetros seco e molhado, bem como a altura barométrica H.

Seja $N=17,5$; $N'=15$ e $H=760$.

A taboa A para o valor de $N=17,5$ temos $N=1,0685635$;

Entrando na taboa B com o valor de $N'=15$ acharmos M para $N=16$, depois de feita a devida correção, $T=12,50$.

Por meio destes, com que entramos na taboa B, encontramos, para $H=760$,

$M=0,0003537$.

Substituindo estes valores na fórmula (1) temos

$$V = 367,7 + 367,7 \left[\frac{18,675(0,011)(435+367,7)}{0,0345} \times 0,0003537 \right]$$

$$V = 373,864$$

IV.

Medida das pressões

Os gases produzidos pela combustão de uma carga de pólvora, seja em vasos fechados, seja no interior das bocas de fogo, desenvolvem uma série de pressões variáveis com a natureza da pólvora e as condições da experiência.

Em todos os casos, a pressão atinge, nos primeiros instantes da combustão, um máximo mais ou menos elevado, para depois se desfazer mais ou menos rapidamente.

Para medir estas pressões vários aparelhos têm sido apregoados, e entre os quais citaremos apenas dois.

Mecanometrico de Rodman. Em 1857, Rodman propôs um processo que, apesar de pouco rigoroso, não tardou em ser adoptado pelo seu comodidade e simplicidade. O mecanometro de Rodman, fig. 29, pode colocar-se n'um...
16
daque da alma
da peça ou simples
mente na funão da
camera sem modific
ção na as condições
do teor; mas a jor

Estas vantagens têm grandes
inconvenientes como logo veremos.

Método de usar do manômetro
de Redman. Para obter a press
ão na alma da boca de fogo jor
mec-se n um ponto determinad
aos paredes da peça um canal cy
línico de nº proximamente de
diâmetro; este canal termina no
exterior por uma parte roscada
tendo 0,04 de diâmetro por 0,04
de profundidade onde se parafusa o apparetto.

Nem canal C do manômetro pode mover-se um embolo em cuja extremidade su
perior há uma ponta de aço em contacto com uma peça de sobre D, mantida por
um grosso parafuso D.

Quando a carga do pólvora se combusta na boca de fogo, os gases desenvolvi
os exercem pressão sobre o embolo e obrigam a ponta de aço a penetrar na peça de sobre D.

Tire-se depois esta e levasse a uma máquina Esta de prova, onde se determina por
meio de pesos ajustados a uma abavaca, a pressão necessária para produzir na
peça D um segundo vestígio exactamente igual ao primeiro.

Conhecendo a secção transversal do embolo deduz-se a pressão por unidade de superfície.

Para se obter a maior exactidão possível, a ponta perfurante é muito obtusa n um
sentido e muito aguçada no sentido perpendicular a este, de modo que os vestígiios
sobre a peça D apresentem uma grande extensão em relação a sua largura e
profundidade.
Existem ainda vagões para o canal C que serve para dar guga aos gases que podem ser passar entre as paredes do canal e o embolo, contraiaendo o movimento deste.

Para não ser necessário a cada experiência recorrer à máquina de prova, determinaria-se previamente, para cada posição, as circunstâncias relativas ao vestígio que deixou a guga D sobre diferentes pressões, e construir-se tábua com estes dados, de onde se concluiu imediatamente a pressão correspondente a qualquer vestígio observado na guga D.

Quanto à exactidão e rigor, este apparelho não oferece grande confiabilidade. Coloca-se na boca de guga, a superfície da base inferior do embolo não fica a face da superfície da alma da guga, de sorte que as moléculas gassosas adquirem uma velocidade, que pode ser considerável, antes de atuarem sobre o embolo, e portanto as pressões indicadas são mais consideráveis do que as realmente desenvolvidas no interior da boca de guga.

O bem disso a experiência de esforço sobre a chave de cobre e também dejetáveis, porque se não considera a questão de duração completamente diferente para a máquina de prova e para a experiência de tiro. Em igualdade de guga, quanto maior for a velocidade do gaseiro, tanto maior será a resistência da chave de cobre; as moléculas checadas não podem afastar-se assim rapidamente no caso de uma acção brusca, por outras palavras, a avaliação de traço deixado na chave de cobre for-se unicamente pelo método estatístico, não obstante o apparelho ter funcionado debaixo da acção de fenómenos dinâmicos, porque o embolo desloca-se debaixo da pressão dos gases, e uma quantidade igual à da penetração observada na chave.

O deslocação de t em t, embora grave, não é para estimar a massa do apparelho deslocado interrumpe-se, e o esforço de inércia é do molde tanto mais sensível quanto o esforço é mais considerável e a acção mais razoável. A medida dos esforços assim obtida tem uma certa analogia com a operação que, para determinar o peso dum martelo, consiste em bater com ele uma peneada sobre o pesado de uma balança. Este manômetro, como todos os manômetros de esmagamento, destinado a fornecer a pressão máxima, não é, na realidade, senão uma espécie de integral das pressões sucessivamente desenvolvidas, e esta integral não pode ter
considerada como representante da pressão máxima com uma aproximação suficiente de ser tão em condições muitos especiais.

O canômetro crusher. A comissão inglesa das substâncias explosivas modificou o aparato de Rodman segundo as indicações do capitão Noble, e adotou o manômetro crusher em que a pressão seja exercida por pequenos cilindros. O manômetro crusher consiste de um parafuso de aço seco, cuja abertura inferior é munida de um obturador de parafuso movel, figs. 30 e 31, permitindo introduzir na câmara CDEEF pequenos cilindros de cobre B. A superfície superior dos cilindros descansa sobre a bigorna A e a superfície inferior agasalha-se contra o embolo movel C, sobre que obriga a mola C. Uma pequena mola em espiral, fig. 32, serve para centrar o cilindro no interior da câmara. A cabeça do embolo e da bigorna são canalizadas, fig. 33. Quatro longos orifícios AB estão em comunicação com o largo canal central que atravessa a parte superior do parafuso. A extremidade inferior do embolo C e hermeticamente fechado por uma chapa de cobre vermelho.

Antes de colocar o aparelho na boca de fogo, pouse o cilindro B no seu respectivo lugar. Pelo esmagamento dos cilindros, mede-se o efeito da ação dos gases. Uma tampa hermeticamente construída serve para o esmagamento do cilindro, deitir a pressão exercida. Este aparelho é menos volumoso do que o de Rodman.

O esmagamento do cilindro é mais regular que a penetração do parafuso, atendendo a que as resistências possíveis, que crescem com as superfícies em contacto, variam menos rapidamente neste aparato. O uso do manômetro crusher tornou-se quase geral, excepto na Rússia, onde se faz ainda uso do manômetro Rodman.
Capítulo 5ª
Armazenagem e Transportes de pólvora.

I.

Toda a pólvora que se destina para o serviço do exército ou da armada é, depois de introduzida em saques de algodão, acondicionada em embalagens de casquinha de forma quadrangular, tendo 3'32 por 2'31, lado do quadrado da base.

Cada embalagem contém 30 quilogrammas. Os saques são pregados com pregos de cobre e têm exteriormente a tinta vermelha a marca da fabrica, a da pólvora, o ano de fabrica, a densidade gravimétrica, a velocidade inicial, o peso da pólvora em quilogrammas e finalmente o número do ordem do embalág. Atualmente se empregam como aproveitamento, os antigos barris de 45."!

A pólvora assim acondicionada é depositada em armazéns e que se diz o nome de Países.

Armazenagem

Países. Os paizes são de alvenaria, as paredes de 0,50 a 0,60 de espessura e vêm sejam forradas internamente de madeira. O sobrado deve achar-se elevado acima dos terrenos próximos, afim de evitar a humidade. São cercados por um muro guarda-jogo de 3'32 de altura, circundando este por um jesso.

Um paiz deve ser de forma rectangular e achar-se colocado para os lugares habitados, pelo menos a uma distância de 200'. Conforme as instruções da Academia Real das ciências de Paris, devem estar afastados 100' dos gios das linhas telegráficas, ou então os gios devem passar por baixo da terra, mas proximidades dos paizes e estabelecer na vizinhança das linhas um guarda paizes de 15 a 20' de altura.

Entre nós o tipo dos paizes é muito irregular, porém a sua construção não se afasta das prescrições, adoptadas nos paizes estrangeiros.

Princípios a que se deve atender na construção dos paizes. Devem principalmente ser preservados da humidade. Se o sub-solo é humedo cobrem-se as
As paredes, logo que se elevam 1a acima do terreno, com uma espessa chapa de chumbo, excedendo o relevo proximamente 20a e curva-se ligeiramente à fim de impedi-\nhar a humidade ali se formar. Depois continua a construção.

Se a humidade vier do exterior guarnecê-se as paredes internamente com um in\nsuto composto de:

<table>
<thead>
<tr>
<th>Material</th>
<th>1 parte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvaíade</td>
<td></td>
</tr>
<tr>
<td>Oleo de linhaça</td>
<td>10 "</td>
</tr>
<tr>
<td>Resina</td>
<td>13 "</td>
</tr>
<tr>
<td>Cera</td>
<td>2,2 "</td>
</tr>
</tbody>
</table>

Este in\nnsuto ajuda-se a quinte depois de bem seca a parede com auxílio dum calorífero.

Se o clima é muito húmido revistem-se internamente as paredes com uma camada de um corpo mau condutor do calor e colocam-se dentro do saida rados contendo co-

ou quaisquer outras substâncias absorventes, renovando-as comumentemente, para que não comuniquem à atmosfera seca uma parte da humidade absorvida.

O melhor meio de preservar os painéis da humidade consiste em os arjar frequen-
tes vezes quando o tempo está seco; abre-se a porta e janelas uma hora depois de ter nasido o sol e fecha-se por meia tarde.

As janelas dos painéis devem ser munidãs de redes de aro de e os vidros gessos ou
jointados de branco.

Para ter nos painéis as matérias explosivas ao abrigo dos raios, colo-\ncem-se em torno d'elles guardas raios. Os guarda raios colocavam-se antigamente sobre os painéis; a dificuldade de os observar e os forçar que resultavam d'uma solução de continuar-
dade no circuito metálico ser com que se abandonasse este sistema.

umas instruções da Academia Real das ciências de 14 de janeiro de 1867 jazes-
\ncrevem estabelecer os guarda raios, para no caminho de ronda e do muro guarda de

sobre supportes sólidos em forma de pirâmide triangular, têm 15a de altura. A ha-\n
\nto do guarda raios cuja altura varia de 3 a 5, e de seção quadrada de 0,04 a 0,05\n
\n\nde lado até ao ponto da inserção do condutor e termina por uma parte arredondada de 0,02 de diâmetro sobre 0,2 a 0,25 de comprimento, cuja extremidade forma um cone de 0,02 a 0,04 de altura. O cone se sobre em ração da sua gúmma e de sua com-

\nuclência de resistir melhor à gúmma que uma jonta d'uro ou galatina.
Os condutores metálicos, cuja gama é indiferente, mergulham por quatro chies de 0,06 de comprimento n’um solo especial de 0,10 a 0,20 de diâmetro com 0,50 jato menos de altura da água. Para os grandes países, tendo por exemplo, 23 de comprimento por 20 de largura e 15 de altura, estabelecem-se três guardaraios, um triângulo isósceles, sobre supports de 12 em hastes de 5 de altura.

O circuito que liga os condutores contorna o solar um pouco abaixo do solo e dá um excesso de garantia pela sua comunicação com os lençóis de água que se formam em consequência das grandes chuvas. Os países de dimensões médias têm dois guardaraios e os de pequenas dimensões bastas-lhe um.

Arrumação dos cumheteos ou barris. Não é possível apresentar um método único porque depende da capacidade dos países, que entre nós, é, como dissemos já, muito irregular. Nóms existem parteleiras, nestes os barris têm de ser colocados sobre o sobrado.

Arrumação sobre o sobrado. Sempre que for possível deve deixar-se ao meio do solar e no sentido de comprimento uma escoia, de 1 de largura, destinada ao serviço, outra de 0,30 jato mais ou menos ao longo das paredes de empena. Se o solar for tão estreito que não se possam arrumar mais de duas giadas de cumheteos ou bar- ris, serão estas colocadas ao centro, unindo os barris ou cumheteos de tojo e deixando o intervalo ao longo das paredes. Se o solar tiver largura para acomodar 4 ou 6 jais de giadas serão estas dispostas de modo seguinte:

Os centros e no sentido de comprimento de solar uma escoia; de cada lado destas duas giadas de cumheteos ou barris unidos de tojo, giamdo uma escoia ao longo da pare- de. Se o solar tiver capacidade para acocmodar seis giadas, serão estas dispo- tas de outro modo.

Os centros e no sentido de comprimento do solar uma escoia; de cada lado destas duas giadas de cumheteos ou barris unidos de tojo; aos lados destas giadas sobre duas outra escoias; deixar uma giada singular de cumheteos ou barris e entre os to- jos destes e as giadas outra escoia.

No primeiro caso os países não podem ter menos de 3 de largura, no segundo 4,68 e no terceiro 7.
A altura das gileiras é determinada pela condição de permitir fazer o serviço com facilidade e commodidade, sem deteriorar os empletos ou barris.

Não convém colocar mais de 4 barris de 43 cm sobre os outros, porque o peso suportado pelos que ficam inferioresmente pode arruiná-los, facilitando a saída de alguns grão de polvora, apesar das tiras de pano que guarnecem as abelhas, ou dos socos em que a polvora pode ser contida.

O sistema de arrumação de gileiras inferiores de barris ou empletos são feitos sobre formantes de 3° de comprimento, 0,95 de altura e 0,43 de largura, ligados nos lógos por meio de travessas.

Arrumação em jarreteleiras. Este sistema é o mais usado entre nós. As jarreteleiras são compostas de gileiras e travessas. Dispostas de modo que se possa colocar três barris ao alto ou um deitado, ou duas gileiras de empletos uma sobre a outra. Os guardos dos barris ou lados dos empletos devem descansar logo menos sobre duas travessas.

O sistema de arrumação dos jarreteleiras travessas ficam 1,60 acima do formante. Quando os barris se arrumam deitados, o que é menos vulgar, devem ser salzados em empletos.

Arrumação dos empletos ou barris, por qualquer dos sistemas indicados deve ser feita por espécies de polvora e por annos de Gabriel, sendo a um lado a destinada às bocas de jogo e ao outro a que se destina os annos portadores.

Prescrição a seguir na conservação da polvora. Os pomos devem ser observados cuidadosas vezes para se esquecer se há vestígios de humidade e onde ela se provém.

O pomar de guarda jogo deve ser conservado num espaço de ermo, principalmente junto às jarreteiras, onde se não deve, por mais alvoro, deixar crescer herba. Os mesmos cuidados são indispensáveis com respeito ao telhado, algaroses, eanos derego e ao fim de impedir as infiltrações para dentro do poal.

Os pomos devem ser arrejados tendo em atenção as circunstâncias especiais da localidade.

Em geral as portas exteriores dos ventiladores não se devem abrir senão quando
a atmosfera estar limpa, sem nevoeiro e chuva, o ar seco e a temperatura exterior elevada, conservando-se semeadas nos grandes calores e no tempo húmido e chuvoso.

Deve evitar-se sempre que for possível entrar no poço quando o ar exterior estiver muito carregado de vapores ou a temperatura exterior exceder muito a temperatura dentro do poço.

Precauções para evitar ou diminuir o risco de explosão: Três causas distintas podem ocasionar explosão nos poços. 1º. Fosfuros, luces, pontas de cigarros mal apagadas e; 2º. Combustão espontânea ou explosão de substâncias químicas; 3º. Centelhas provenientes do choque ou atritos entre corpos duros.

É inútil insistir sobre a importância de não consentir fosfuros, luces etc. ou de haver grande quantidade de poeira.

Tão se adotou também no poço, mesmo cartuchos para armas portáteis de carregar pela culatra, nem cápsulas, nem fulminato de mercurio, nem qualquer matéria que possa fazer explosão por destruição.

Em relação ao risco por combustão espontânea ou explosão evita-se não guardando nos armários da poeira substâncias que possam ocasionar este perigo.

Os garrafas, o algodão em rama e as estojas imbebidas de azeite ou substâncias que sejam suscetíveis de se incendear espontaneamente.

Para evitar o risco dos sinistros pela centelha deve excluir-se rigorosamente o ferro e o aço dos poços.

E por isso que se recomenda que todas as açoites metálicas sejam de cobre, bronze ou latão.

O ferro de madeira recomendado para guarnecer as paredes interiormente, tem por fim evitar a aparência de arros sobre o sobreiro do poço que, gracionadas por objectos de ferro, poderiam ser causa de sinistros.

Para tornar esta causa de perigo menos provável, é regularmente não pen- tar nos depósitos de poeira sem primeiras colocar sacos de madeira, sao- tos de cordel ou de guta-percha.

Os enchetes ou barris, que estão em estado em contacto com a terra ou que tiverem
sidos transportados em viaturas, em cujo leito se não tiver posto um encerado, ou
mais estêjam bem limpos, não devem ser depositados no piai sem jereição
de limpeza...

Nos serviços interiores os paiais, os barris ou embetes devem ser transportados sobre
piaiolas de louça, ou por qualquer outro modo mas nunca rolados ou em
carrinhos de mão.

Os barris numa serão se movem apertados, fundados ou desfundados dentro do piai.
Para apertar, fundar ou desfundar os barris somente se poderá fazer uso
de instrumentos de madeira ou de cobre.

Antes de fazer qualquer remoção de pólvora dentro dos paiais deve o sobrado ser
varrido e os barris ou embetes bem limpos, principalmente nas juntas. Estender
se bem destes e no sobrado ou no caso de necessidade regar-se-ia este com água.

II.

Transportes de pólvora

Os embetes ou barris de pólvora destinados a serem transportados, devem sub-
metê-los a um minucioso exame.

Transporte em caminhos de ferro. O transporte da pólvora por caminhos de
ferro, só pode ter lugar em comboio de mercadorias. No caso de transbordo estes
pode efectuar-se em zelosia de ria e, pelo menos com duas horas de sol. A pólvora en-
trega-se em barris duplos ou em sacos ou cartuchos acondicionados dentro de
barris ou embetes.

Cada vagão não pode transportar mais de 5000 kg, compreendendo a tara do
peso bruto. A uma exploração não poderá nunca exceder o carga de três vagões.
O regulamento de 7 de julho de 1863 (ordenado do exercitado N.º 39 de 21 de julho de 1863)
estabelece o modo como deve efectuar-se o transporte da pólvora pelos caminhos
de ferro.

Uma escolta acompanha sempre a pólvora e tem lugar no carro destinado ao
condutor do trem. A escolta não deve afastar-se do comboio durante a sua per-
rincagem nos estaços, e ainda limitar-se a auxiliar a carga ou descarga sem se
intrrometerem por forma alguma no serviço dos empregados da linha.
Transporte pelas vias ordinárias. Quando o transporte se faz pelas vias ordinárias, devem as viaturas marchar numa só fileira e nunca com velocidade maior que o jiaso. Evita-se a passagem nos saposados, tanto quanto possível, onde o comboio nunca estaciona. Noa Alemanha acha-se em vigor as disposições seguintes:

Os bairros são carregados de modo que se não produzam gripeções, a viatura é coberta com um encherado. O cargo duma viatura não deve exceder 500 kg. Quando o transporte é duma certa importância, que se marcham as viaturas, tema em tempo de paz como em tempo de guerra, por grupos de duas ou três. Devem ir a jiaso, evitar as calçadas e achar-se a 40 mm de distância unas das outras.

Se na estrada ordinária houver uma passagem de nível, as viaturas zem alto a 400 passos de distância. Se essa passagem e depois conforme as circunstâncias, continua a marcha: se está próxima a passagem é um comboio marcha a 500, até 400 passos além da linha ferroviária, se o comboio passou, as viaturas com a polvora não atravessam a via sem primeiro observar que não existem carros excessos.

Transporte por água. Nos transportes por água os bairros devem engolir-se no barco sobre dormentes de madeira, de modo que a primeira camada fique, pelo menos, 1/4 acima do fundo do barco.

Espaços de 0,70 estmados a facilitar o frequente esgotamento das águas, serão reservados em toda a largura do barco e em número proporcionado ao tamanho deste.

Os botões e barcos que se encontram devem apagar os seus fogos o barcos a vapor devem sempre manobrar de modo que os produtos da combustão saídos da chaminé não possam tocar os barcos que conduziam polvora. Noa Alemanha as viaturas que, nas estradas ordinárias, transportam polvora, levam uma bandeira negra e nos transportes de mar o signal é o mesmo com a diferença de que têm a letra P feita com tinta broncea.
Capítulo 5º
Substâncias explosivas

Apesar de serem muitos e variados os explosivos modernos, neste capítulo saberemos apenas dos que mais geralmente se empregam nos usos da guerra.

I

Algodão-pólvora

As matérias primas que entram no fabrico deste explosivo são o algodão, substância vegetal, e dois ácidos minerais, o ácido nitrítico e o ácido sulfúrico.

O algodão deve ser bem limpo e desembaraçado de todas as substâncias estranhas. O algodão-pólvora a que o nome de pyrosilica pode oferecer o aspecto filamentososo do algodão em rama, apresentar-se-á em fios formando meia-dão, tecido em tranças ou em cordeiro como se fabrica na Áustria, pelo processo de Lenck, ou finalmente em pasta, moldado em cilindros ou em grão, como se obtém na Inglaterra pelo processo de Abel.

O ácido nitrítico, de uma densidade de 1,45 a 1,50 deve ser tão puro quanto possível e sobre tudo isento de cloro, por que a presença deste corpo diminui o encimento. Se um fabrico bem dirigido, 100 partes de algodão em rama devem produzir 133,5 de algodão-pólvora. O ácido sulfúrico deve ser o ácido inglês de 1,35 de densidade.

A quantidade de algodão-pólvora depende essencialmente do grau de concentração dos ácidos e a sua estabilidade requer a máxima pureza dos componentes.

Lenck reconheceu que não só a pureza do algodão, mas também a regularidade de sua imersão nos ácidos e as lavagens ulteriores tinham uma grande influência na qualidade do produto.

II

Fabrico do algodão-pólvora
Processo Lenck

Lavagem do algodão. O algodão é desembaraçado das matérias estranhas,
resina, gomas e immergindo-o, por espaço de 2 a 3 minutos, n'uma dissolução de 102 de densidade. O algodão em gis, tranças ou cordões é dividido em pequenos volumes, formando medias de 35 gramos. A medida que se retira do banco suspende-se para escorrer o liquido alcalino, cuja diluição se obtém totalmente, primeiro pelo auxílio de uma máquina hidro-extractor, como a que se empregava na Lavanderia da Companhia das Águas de Lisboa, e depois introduzindo as medias em caixas de zinc crivadas de furos, colocando-as em água corrente, por espaço de 4 horas.

Deixa-se esgotar a maior parte da água, conservando o algodão dentro das caixas. Depois de os retirar da água, vae depois à máquina hidro-extractor e finalmente seca-se n'uma estufa.

Tratamento pelos ácidos. A mistura dos ácidos, que deve marcar a temperatura de 17,5º a densidade que indicamos, é feita na proporção de 1 de ácido carbônico por 3 de ácido sulfúrico, e só se emprega depois de gria. Deita-se a mistura acida em grandes tinas de barro vibrado ou porcelana, que para economia de trabalho, têm marcas e divisões que representam quantidades de ácido correspondentes a pesos determinados de algodão. Este é introduzido por pequenas porções no banho acida, formando o contacto tão íntimo quanto possível, o que se consegue por meio de espátulas. Depois de 20 minutos retira-se o algodão do banho e coloca-se sobre grades, dispostas superiormente às tinas, onde esgota o excesso de ácidos, podendo auxiliar-se a operação espremendo levemente. Logo que uma certa quantidade de algodão (3 kg) têm sofrido este tratamento, introduz-se n'um vaso de grés, onde permanece por 24 a 48 horas a fim de continuarm a nitrificação. Sobre o algodão assim colocado nos vasos assentam-se um disco de pano, submetendo a uma leve pressão, de modo que fique coberto por uma parte dos ácidos de que estava impregnado. Os vasos onde se contêm o algodão assim disposto devem ficar n'um lugar cuja temperatura esteja compreendida entre 5 e 25º C. Torna-se por isso necessário, se inverno, elevar a temperatura e se vera resfriar os vasos. No inverno é indispensável
uma grande vigilância durante as primeiras 3 ou 4 horas, para obviar a tempo a rápida elevação de temperatura que pode dar-se.

Retirado dos vasos o algodão-pólvora, introduz-se em caixas crivadas de furos que se colocam em água corrente, por espaço de 20 dias e depois é enxuambrado.

Para juntar-se a todos os vestígios de ácido, se de novo ao banco de potassa caustica, enxuambrar-se depois de lavado em água corrente e, finalmente, secar-se ao ar livre ou em estufa, a temperatura de 35°C. O de perfeito desenvolvimento dessas operações depende principalmente a boa conservação do algodão-pólvora, que não deve ficar ácido nem alcalino, porque se não ficar completamente neutro pode decompor-se com o tempo e inflamar-se espontaneamente.

A aplicação do silicato solúvel. Lench recomenda o emprego de silicato de potassa e soda para obviar à decomposição do algodão-pólvora. Eliminados os últimos traços de ácido, mergulha o algodão-pólvora por espaço d'uma hora em caldeiras contendo uma dissolução de silicato solúvel, a temperatura de 35°C e com a densidade de 1,072.

Retirado do banco enxuambrar-se o algodão e expor-se por espaço de 3 dias ao ar livre. O silicato é decomposto pelo ácido carbonico da atmosfera e gera um precipitado de silice que se depreia sobre as fibras do algodão, diminuindo-lhe a inflamabilidade e evitando a sua decomposição. Depois da aplicação do silicato lava-se o algodão em água corrente, enxuambrar-se e seca-se ao ar livre ou em estufa.

Durante o fabrico não há perigo, com exceção da operação do engenho na estufa onde é necessário uma grande vigilância e grande cuidado.

Ensaios. Ultimado o fabrico procede-se aos ensaios seguintes:

1.° Em quanto à sua combustão ao ar livre, onde o algodão-pólvora deve arder sem explosão nem gume e sem deixar resíduo;

2.° Em quanto ao peso d'um determinado volume comprimido dentro de um cilindro metálico abaixo de certa pressão; notando-se a densidade respectiva que deve ser constante;

3.° Em quanto à força balística, medida pelo cronôgrafo elétrico, que deve ser constante e igual, provindencialmente, a 3½ vezes a da pólvora ordinária em identidade de peso.
Processo Abel.

Abel introduziu no processo Lenck uma série de aperfeiçoamentos e conseguiu obter o algodão pólvora conjurando o que representa realmente um grande progresso. As primeiras fases do processo nada têm de notável.

O algodão en xuma, obtido dos desgarrados das fábricas, é perfeitamente lavado até jecer n'um grande estado de pureza; depois é cardado mecanicamente e transformado n'uma pasta contínua de 9,01 de espessura e perfeitamente seca.

Segue então o tratamento pelos ácidos, como no processo Lenck.

A imersão dura 4 a 5 minutos agitando o algodão com uma espátula no seio dos ácidos. Retirado do banho, espume-se sobre as grades aplicando-lhe em cima uma chapa estrita que se manobra por uma alavanca.

Aumenta-se depois convenientemente, 100° da mistura acida por 1° d'algodão, e metase dentro dos vasos de grão para ali se continuar a nitrogênio. Os vasos são cobertos com tampa e colocados dentro de grandes bacias onde circula uma corrente d'água fria, cujo nível deve jecer um pouco abaixo da tampa dos vasos, que permaneçam por espaço de 24 horas nestas condições. Passado este tempo, levase o algodão à máquina hidro-extractor para lhe extrair parte dos ácidos e em seguida mergulhe-se n'uma grande tina de madeira, munida de um fundo falso, destinado a retêr a massa. Uma rápida corrente d'água percorre a tina e espere-se a lavagem por espaço de 10 minutos, sendo agitada a massa com rodos de madeira.

Vocês em seguida à máquina hidro-extractor onde se demora até que contenham apenas 30° d'água.

Como nestas condições o algodão pólvora contém ainda ácido, procede-se então a uma nova lavagem a quente em tinas cilíndricas de madeira. Cada tina recebe 250° d'algodão pólvora e 0,453 de carbonato de soda.

Consegue-se a ebolição da água por meio de tubos onde circula o vapor. De 4 a 6 horas renovam-se as águas e prolonga-se a operação por 24 horas.

Formação da pasta. Esta operação efectua-se em pilões idênticos aos que se empregam nas fábricas de papel.
Cada fenda recebe 100% de alvos de polvo que, arrancados e triturados, passa depois para grandes bacias de água, onde umas e outras são de rochas de pedra, onde sofrem nova lavagem por espaços de muitas horas, renovando-se a água quatro ou cinco vezes. A massa é levada depois à máquina hidro-extractora até ficar com 31 a 32% de humidade, podendo então moldar-se ou reduzir-se a grãos.

A confecção. O comprimido de alvos de polvo obtém-se por meio da prensa hidráulica. Para isso divide-se a massa em porções determinadas conforme a modulação é em cilindros maiores ou menores, em discos ou em tijolos.

Os cilindros têm 0,375 e 0,63 de diâmetro por 0,050 e 0,038 de altura com um guro na base para a escavação; os discos têm 0,175 e 0,153 de diâmetro por 0,025 de espessura e os tijolos 0,12 de largura e 0,025 de espessura. O alvo depois de comprimido conserva ainda 25% de água, neste estado e mesmo com a percentagem de água reduzida a 17% pode cortar-se com serras ou com qualquer outra ferramenta.

III

Propriedades do alvos de polvo

Propriedades físicas

Aspecto. O alvos de polvo, com exceção do fabricado pelo processo do Abel, apresenta o aspecto do alvo de ordinar, que filamentos, foi menos glecevies, mais asperos ao tacho e mais griaveis. Quando seco e greicerado na obscuridade torna-se luminoso, fenômeno que se não dá com o alvo de ordinar; finalmente, os filamentos do primeiro, à luz polarizada no microscópio apresentam um aspecto jutse ou pouco carado, em quanto que os do segundo parecem brilhantes.

O alvos de polvo comprimido apresenta-se com massa de cor ligeiramente amarelada e possue a consistência do cartão: a sua dureza varia com o grau de compressão que sofreu. Quando bem preparado é inóculo, incisivo e sem sódico.

Sólubilidade. É completamente insolvível na água tanto a frio como a quente. Um excesso d'água não altera as suas qualidades, que se restabe...
lecem depois de seco.

Atendendo a está circunstância conservasse o algodão polvora com 25% d'água sem perigo de explosão.

Perfeitamente puro é também insolúvel no álcool etilizado, todavia como a sua iguicria não é absoluta, porque no mesmo produto se encontra o algodão em diversos estados de nitificação, quanto mais homogêneo for tanto mais solúvel será. Esta circunstância pode ser favorecida pela elevação de temperatura e gama de concentração dos ácidos na ocasião do fabrico.

Segundo Abel a porção que se dissolve em 1 parte de álcool e 2 ether é sempre 0,75 a 1,5%.

Densidade. A densidade varia com o processo de fabrico e o grau de compressão: terno médio é de 0,1 a 0,3 para o algodão em rama, em cordão ou trança e atinge até 1,05 no algodão comprimido.

Humedade. É menos higrômetro que o algodão ordinário e que o polvora de guerra. A sua humidade normal varia de 1,3 a 2% e não aumenta por uma exposição prolongada a um meio saturado de vapor d'água, mais de 2,75% aproximadamente, o que parece não influir sensivelmente sobre a inflamação.

IV.

Propriedades químicas e mecânicas.

Constituição química. A constituição do algodão polvora é representada pela fórmula seguinte:

\[C_{12}H_{10}O_{3}(AxO_5H_2O) = C_{12}H_{10}O_{3}AxO_4 + 6H_2O \]

Como se vê, o produto explosivo deriva da celulose, trocando com esta três equivalentes d'ácido hipoclorítico por três equivalentes de hidrogênio.

Explosão. Todos os explosivos produzem efeitos mais ou menos energicos conforme a natureza do agente que os faz se inflamar. Para um dado explosivo a intensidade dos efeitos varia com a quantidade de matéria empregada e com as condições em que a explosão foi provocada. D'áqui resultam duas ordens de explosão: explosão de primeira ordem é a que produz efeitos violentos e é provocada por agentes que produzirem ao mesmo tempo cada bussco, grande dem-
volvimento de calor e movimento vibratório considerável, como por exemplo a explosão provocada pelo emparelhamento de uma cápsula carregada com fulminato de mercurio.

A combustão transmitida por meio de um corpo inflamado a uma substância explosiva produz resultados menos energéticos, isto é, explosão de segunda ordem.

Combustão. Inflamando o algodão pólvora o ar livre por uma elevação de temperatura ou pelo contato de um corpo em ignição, a ordem sem explosão com chama amarela. A velocidade de inflamação e combustão, segundo Piober, é 8 vezes a da pólvora ordinária, de modo que se queimarmos algodão pólvora sobre a pólvora ordinária aquelle arde sem que esta exploda.

O algodão pólvora arde sem ruido aparente e sem gume sensível. A combustão no vácuo ou debaixo de gases pressurizados apresenta grande analogia com a da pólvora nas mesmas circunstâncias.

O desenvolvimento gasto produzido pela combustão é considerável e explica a energia dos efeitos obtidos. Quanto à composição dos gases, depende essencialmente das condições da explosão.

O quadro seguinte apresenta em volumes a composição dos produtos correspondentes à combustão de 100 partes de algodão pólvora segundo diferentes químicos.

<table>
<thead>
<tr>
<th>Produtos da combustão</th>
<th>100,00</th>
<th>100,00</th>
<th>98,15</th>
<th>98,18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxido de carbono</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acido carbonico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proto carbureto de hydrogenio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicarbureto de hydrogenio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cianogenio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicoxyde de azoto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Vapor d'água"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Hydrogenio"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A conclusão geral a tirar das análises de Holodyi é que a natureza e composição dos produtos gasosos depende das condições da explosão e, especialmente, da pressão a que estão submetidos. O oxigênio d'arote, tóxico e prejudicial para a conservação das armas, desaparece inteiramente quando se opera abaixo de grandes pressões. Holodyi admitte que a uma alta temperatura, o protocarboneto de hidrogênio reduz o oxigênio d'arote para formar ácido carbônico, oxigênio de carbono e água. A proporção destes três corpos parece aumentar com as pressões, ao passo que o protocarboneto de hidrogênio diminui. O oxigênio de carbono, gir deleterio, e o ácido carbônico entram por metades; progressivamente, nos produtos de combustão. Pode resultar que os gases da polvora algodão são mais inócuos nos modos que os da polvora ordinária, no interior das casamatas e galerias de minas.

O resíduo sólido é, quando muito 2%. Os principais produtos, mais abundantes, são oxigênio de carbono, ácido carbônico e vapor d'água.

Para evitar a grande produção de oxigênio de carbono têm-se empregado o algodão polvora impregnado de salitre ou clorato de potássio.

V. Aplicações do algodão polvora.
A energia do efeito obtido pela explosão de algodão polvora e a perigosa de que possuía este corpo de arder sem deixar resíduos e sem gume, lembram aplicação às armas de fogo, porém em virtude da falta de regularidade de efeitos e por ser grudante até hoje não pode substituir ainda a polvora ordinária.

Empregou-se contudo nos torpedos, na carga dos projéteis vex e sobre tudo nos trabalhos de minas.

O fabrica de Stammarn, na Austria, fornecce, para os trabalhos de minas, carretinhos cilíndricos de algodão polvora, tendo 0,20 a 0,052 de diâmetro por 0,20 a 0,078 de altura, com uma quantidade de 4,5 de diâmetro e alojamento da escóora.

O cartucho é formado d'um envolvento de papel pergaminho.

A inflamação das cargas pode prostruir-se ou pela gásca elétrica ou pelo carbono bota fogo. (Bickford)

Recentemente têm-se adoptado o sistema proposto por Kobl, que consiste em 15°.
produrir, tanto quanto possível, a explosão instantânea de toda a carga. Para isso empregase uma escorva gelatinamente muito forte, ou então adota-se a dis-
posição seguinte: Um tubo de cobre ligeiramente côncico fig. 34, contém-
se na parte inferior A B gelatinado e na parte superior B C albeção
polvera em gloco; em contacto com o albeção fica a extremidade do cor-
dão bota fogo. Coloca-se a escorva assim preparada no interior do car-
tucho como se vê na fig. 35. O cordão liga-se ao tubo por um estranjo-
lamento. Com esta disposição basta A B se gelatinize se mercúrio para
produzir a detonação de toda a carga.

Querendo fazer um tiro de mina, basta, praticado o furo, introduzir-lhe os cartu-
chos que constituem a carga, e sobre eles o cartu-
cho escorva representado na fig. 36.

VI.

Ensaios

Apesar de albeção polvera ser submetido à gelati-
ção a uma série de provas de recepção, e haver certo in-
teresse conhecer os meios de determinar o seu grau de
pureza e sobretudo de investigar se está ou não misturado com
albeção ordinário.

Dratando a matéria por uma dissolução de iodo em isôbrete de
potassio, e humedecendo a depois com acido sulfúrico diluido, obtense uma co-
loração azul para o albeção ordinário, e amarela para o albeção polvera.
Examinando este ao microscópio distinguem-se perfeitamente os vestígios do al-
beção ordinário.

Para se conhecer se está alcalino, tomam-se 2º bem carregado e seco ao ar, e tratam-
se por 5º de acido clorhídrico normal, que se obtém, diluindo 20º de acido clor-
hídrico de 19º B em agua distilada até prensar 1000º.

Torna-se depois o albeção até não dar reação acida, e na dissolução assim for-
mada determinase a quantidade de carbonato de sódio por meio d'um lícor
tipo alcalino, operando comparativamente sobre 10º de lícor acido normal.
Julho achado deve estar compreensão entre 2 a 4%.

Para determinar a solubilidade, pôe-se em digestão, por espaço de 2 horas 3º de alginato de polvo, lavado em água distilada e seco, numa mistura de 1 parte de álcool a 40º a 2 partes de ether rectificado. Filtra-se e conserva-se entre pa-

tel passendo a matéria que fica no gilho, seca-se e exposta por 2 horas ao forno:

da diferença de peso não deve exceder 12,33%.

VII.

Nitróglicerina

A nitróglicerina resulta da ação da mistura do ácido nitrato e sulfúrico sobre a glicerina.

A glicerina, $\text{C}_3\text{H}_5\text{O}_3$, é um álcool tricíclico que constitui um elemento essen-

cial das gorduras animais.

Pode obter-se de muitos modos quando se prepara a steárina. A glicerina,

do comércio contém, ordinariamente, 2 a 6% d’água. O peso específico da

glicerina pura é de 1,27 a 1,25. Deve ser branca ou levemente esbranqui,

chedo sensível, e marcar pelo menos 30º na gêsea xaropez, à temperatura de

15º: não deve conter saos de sal ou de chumbo, nem traços de matérias gordas.

O acetato tribásico de chumbo não deve produzir sensão uma ligeira turva-

ção, sem precipitado sensível.

Se a glicerina estiver misturada com glúcos, se reconhece-se a presença des-

sa por meio da soda carbonica, que lhe comunica, na ebulação, uma cor de tigela.

O ácido nítrico deve marcar, pelo menos, 48º B, ser puro, isto é sem mistura de

nitrato de soda ou de cinzço, e conter apenas 0,5% de ácido sulfúrico.

O ácido sulfúrico deve marcar 62,4º B, deve ser branco e não conter nem pro-

dutos nitratos, nem sulfato de chumbo, nem ácido arsênico.

Os processos gerais da preparação da nitróglicerina têm grande analogia

com os da preparação do alginato de polvo. A reação que se opera é a seguinte:

$$\text{C}_3\text{H}_5\text{O}_3 + 3\text{H}_2\text{O} = \text{C}_3\text{H}_5\text{O}_3\text{H}_2\text{O} + 3\text{H}_2\text{O}$$

É necessário conduzir a operação de modo que se não produza elevação de

temperatura, e manter constante, tanto quanto possível, a concentração do áci.
do nitroglicerina: o último resultado obtém-se pela adição do ácido sulfúrico, destinado a absorver a água que se forma.

O emprego de uma corrente d'água constante evita que na reação se manifeste elevação de temperatura.

VIII.

Fabrico da nitroglicerina

Os utensílios necessários para o fabrico da nitroglicerina, fig. 37, um grande vaso de gres A, para refúgio.

V e lavagem; um vaso de ferro fundido B, para a mistura, com uma linha de gé,

marcada tanto interior como exteriormente; uma medida de folha ou de porcelana C,

para a glicerina; um jarro de vidro D, umido d'um tubo de carvão; depois como se vê na figura.

Sobre o emprego as proporções seguintes:

Glicerina ½ volume

Ácido nitrico (densidade 1,525) 1

Ácido sulfúrico (densidade 1,831) 2

Hughes prepara a mistura ácida, fazendo passar os vapores nitrícos pelo ácido sulfúrico (densidade 1,831) contido em frascos. É um aparelho de Woolf. O processo de Hughes recomendava-se pela sua simplicidade e rapidez.

No vaso A, contendo 5 a 6 litros d'água a temperatura do gelo fundente, mergulha-se o vaso B, tendo-lhe previamente introduzido 2,5 da mistura ácida, e destas-se pelo peso a peso 0,550 de glicerina. Agita-se a mistura com uma varetá durante cinco minutos; lavase o produto em vasos de gres como A, secantase e eliminamse os últimos traços d'água no jarro separador D.
Obtém-se de cada vez 0,5 a 0,7 de nitroglicerina, o que corresponde a um rendimento de 143 a 200%. Em cada hora podem fazer-se 3 a 4 operações.

O produto assim preparado não possui a dureza indispensável para se conservar por muito tempo. Além disso, se de cada vez se juntar uma grande quantidade de glicerina, a mistura acida aquece com desenvolvimento de vapor e úmidos formações de ácido carbonico.

O processo de Ruberg, de Stockholm, torna-se recomendado para trabalho com nitro e sem receio de perigo.

A mistura acida, jorvamente preparada, é introduzida no recipiente 4 (fig. 38 e 39)

O recipiente 2 contém a glicerina pesada; o recipiente 3 está cheio de água fria.

Os recipientes são unidos por tubos de esgoto AB g, que estão adaptados por meio de múltiplas á, b, m. Os recipientes 1 e 2 comunicam com uma caixa C, colo.

cada superiormente a um longo canal D jorrad de alumínio, disposto em compartimentos formados de escada como se vê em cortes.

Figura. O canal fica metido em
uma caixa de madeira impermeável. A caixa C está suspensa de modo que recebe movimento de va e vem por meio de uma biela. Na parte inferior da caixa existe um termômetro T destinado a marcar a temperatura desenvolvida.
na reação. A água do recipiente 3 enche o espaço comprimido entre o canal D e a caixa de madeira que o envolve, escapando-se depois pelo tubo M.

Para preparar a nitroglicerina, começa-se por lavar o canal D com a água de refrigeração; depois deixa-se entrar a mistura acida na caixa C, cujo movimento oscilatório permite que se espalhe nos diferentes compartimentos do canal D. Logo que a mistura acida tende a escapar-se dos compartimentos, abre-se a terceira L para dar acesso à glicerina. A reação termina quando os líquidos deixam de correr no canal D. Recolhidos no recipiente 4, que contém água, a nitroglicerina deposita-se e lavase então com eucaido. A temperatura deve sempre manter-se abaixo de 30°.

IX. Propriedades da nitroglicerina
Propriedades físicas.

Perfeitamente livre de humidade e purificada, a nitroglicerina constitui um liqüido oleoso, de um amarelo claro, sem cheiro, e de um sabor picante. Sua densidade é 1.16. Tem ação tóxica, sendo conveniente, quando se manipula, usar luvas de caoutchouc para evitar a absorção pela pele. Recomenda-se como contra veneno o café, ou glicerina com uma dissolução de potassa caustica ou de ácido iodicórico. A nitroglicerina dissolve-se facilmente no álcool, no etanol, no acido glicerolêisoso e na benzena.

Os processos de purificação têm por base a quase insolubilidade da nitroglicerina na água. Resfriada até +3° a nitroglicerina congela e forma massa cristalina com aumento de 1/8 do volume. Neste estado parece apresentar menos perigo do que no estado líquido em que se torna facilmente pelo choque. Affirma-se, porém, que a natureza dos cristais é bastante para provocar a explosão.

É necessário grande cuidado em segredo-a, não sendo nunca empregarse para isso a acão directa d’um foco colorífico. É bastante mergulhar a matéria em água tópida porque quando gelada súbitamente a +11°.
Propriedades químicas e mecânicas

Esta hoje estabelecido que a nitroglicerina tem por fórmula \(\text{C}_6\text{H}_5\text{O}_3\text{N}_3\text{O}_7 \) gerado da glicerina pela substituição de três equivalentes de hidrogênio por outros três de ácido acético. Este explosivo experimental, fenômeno de decomposição lenta que, na prática, apresenta grave inconveniente, fenômenos que se atribuem à sua formação dos produtos. A decomposição espontânea é principalmente favorecida pela presença de pequenas quantidades de ácido nitrico ou do ácido acético. Segundo Liist todo o perigo desaparece quando os produtos gaseosos podem livremente escapar-se para a atmosfera, por que neste caso não se manifestando excesso de pressão sobre a matéria, a explosão não se faz.

Para conhecer a estabilidade da nitroglicerina basta introduzir na massa, de tempos a tempos, um pousso de tournesol, que não deve acusar reação aci.

Esta condição depende o valor industrial da nitroglicerina; porque se tiver experimentado um fenômeno de decomposição, tem já perdido parte da sua força explosiva, e sobre tudo torna-se perigoso manuseável. A nitroglicerina possui também duas ordens de explosão. Explosão de primeira ordem ou detonação provocada pela ação do fulminato de mercúrio ou pelo choque. Se forensemos com um martelo algumas gotas de nitroglicerina colocadas sobre uma bigorna, derramadas unicamente as partes chocadas, sem que as restantes se enflamem; mas, se a substância estiver coberta apenas por uma gota de espasal, a detonação propaga-se por toda a massa. Debaixo da ação do fulminato de mercúrio a explosão comunicar-se a toda a massa com violência. O explosão de segunda ordem obtém-se pela elevação de temperatura ou pelo contato de um corpo em ignição, ou melhor ainda pelo combustão imediata, que pequena quantidade de fulminato ordinário.

A nitroglicerina quando desluga faz logo a formação de um grande volume de produtos gaseosos com desenvolvimento considerável de calor. Segundo Berthelot os produtos que se formam são os seguintes:

\[
\text{C}_6\text{H}_5\text{O}_3\text{N}_3\text{O}_7 = 6\text{CO}_2 + 5\text{H}_2\text{O} + 3\text{N}_2 + \text{O}_2.\
\]
Vê-se que a nitroglicerina desenvolve maior quantidade de oxigénio do que o necessário para queimar os elementos combustíveis; o oxigénio em excesso pode, de baixo de pressão, unir-se ao ar do ar e dar origem ao bióxido de azoto. Bertalot aconselha misturar a nitroglicerina com substâncias que possam combinar-se com o oxigénio.

XI.

Aplicações da nitroglicerina

Apesar de não poder ser empregada nas bocas de fogo, não só pelo seu estado líquido, mas também por causa de suas propriedades gastatantes, nos trabalhos de minas e exploração de pedreiras seria de grande vantagem, pelo menos do ponto de vista económico, poder rapidamente obter a nitroglicerina e pela sua força explosiva; 4 a 5 vezes mais considerável que a da pólvora ordinária; mas apresenta também grandes inconvenientes, não sendo dos meios que resulta dos choques produzidos nos transportes. Por estas razões tenha de abandonar-se o emprego da nitroglicerina, perdendo-se todas as vantagens económicas que resultam deste explosivo, se o engenheiro Nobel não tivesse reduzido ao estado sólido. Alcançada a nitroglicerina no estado líquido, sucedeu-lhe a dynamite, cujo emprego se tem generalizado cada vez mais.

XII.

Dynamite

Dá-se o nome de dynamite ao produto que resulta da mistura da nitroglicerina com substâncias que a deixam reduzida ao estado sólido. A mistura deve g sar-se por forma tal que o líquido não possa separar-se nem de baixo de uma pressão energica, nem durante os transportes, a armazenagem ou o emprego.

Se as substâncias que se empregam para solidificar a nitroglicerina, não em correm para a explosão, ficando depois da combustão como resíduo sólido, a dynamite dir-se-ia de base inerte. Se pelo contrário, as substâncias são combustíveis e tomam parte na explosão, a dynamite dir-se-ia de base activa.

Dynamite de base inerte. Eles diversos dynamites de base inerte distinguem-se pela proporção de nitroglicerina que contêm e pela natureza da mate...
ria absorvente empregada. As matérias de que mais usamos se tem sido o kieselguer,
a randanite, a silixa ordinária, o pô de tijolo, a cinza de carvão de pedra,
as escorias de forja etc. Nos de todas estas substâncias as que são melhores
resultados são o kieselguer e a randanite. O kieselguer ou terra de infusorios,
e um pó branco d'apparência garimposa, composto de silixa quasi pura: a ran-
danite é uma substância analoga mas d'origem diversa, porque provem
do decomposição dos gelospatos naturaes pelas aqüas minerais aciduladas;
em quanto o kieselguer resulta da decomposição de pequenos crustáceos,
e por isso se designa pelo nome de terra de infusorios. A proporção da nitro-
glycerina que se for absorver pela substancia inerte, depende da força com que
ve e seitar a dynamite. O seu Nobel, na fábrica da Trofaaria, na margem
esquerda do Tejo, fabrica três tipos de dynamite de base inerte, N.1, N.2 e N.3,
contendo respectivamente 75, 50 e 30 de nitroglicerina. O Dynamite N.1 e a que
se emprega ordinariamente.

XIII.

Fábrica da Dynamite de base inerte.

Antes de fazer a mistura a matéria absorvente se pulverizou e passarão
a gomera. A randanite e kieselguer são fortemente submetidos as águas
de color ninho forno de reverberão durante 5 ou 6 horas, a fim de as secar e destua-
r-lhes as substâncias organicas.

Depois de convenientemente preparada introduz-se a substancia inerte junto-
mente com a nitroglicerina, em proporção determinadas numa caixa, onde se
efectua grosseiramente a mistura empregando para isso uma espátula de madei-
ra. Passa-se em seguida toda a massa (5°) para uma taboa quenécida com
uma gotica de chumbo, e ali se estende muitas vezes com um rolo de madeira.
Foi
tornar a mistura tão íntima quanto possível.

A dynamite empregada nos usos da guerra é fornecida em cartuchos de 100 gr.
de papel pergaminhado ou papel estanhado, de forma cilíndrica, tendo 0,019 a 0,030
de diâmetro e 0,010 a 0,030 de altura. Também se costuma introduzir em cartuchos
metálicos, a que são o nome de petardos, contendo de 25 a 100 grammas. O petar-
16°.
do de 100 g (fig. 40) é de forma prismática, tendo 0,032 por 0,018 de base, e 0,132 de comprimento; e de 25 gramas é cilíndrico, e tem de diâmetro 0,030 por 0,023 de comprimento. Os fios dos sete rios não são soldados e têm um alojamento para a escorva.

Acondicionamento: Os cartuchos e sete rios de 100 gramas são dispostos em caixas de madeira, levando cada uma 25. Estas pequenas caixas introduzem-se em outras caixas maiores que contêm 25 kg de dinamite. Os sete rios de 25 gramas acondicionam-se do mesmo modo introduzindo-se em cada pequena caixa 100 sete rios.

Nos parques de companhia, o dinamite é transportada a dorso de cavalgada em caixas forradas de velho de aço.

Cada uma destas caixas contém quatro caixas idênticas, duas com 70 cartuchos dispostos em duas camadas, as outras duas com 35 sete rios de 100 gramas no compartimento inferior e 35 de 25 gramas no compartimento superior.

Os escorvas não são sempre separadas da dinamite durante os transportes. Para evitar os choques, os cartuchos e caixas são envolvidos em aprazas de papel.

Recepção e verificação. As alterações que a dinamite pode experimentar são de duas espécies:

1. Pode dar-se uma excusão de nitroglicerina que se manifesta sobre os cartuchos formando gotas ou simplesmente manchas. Quando se observam efeitos desta natureza convém destacar logo as partes manchadas do paquete e queimar-se. Se há excusão a chama não apresenta pontos amarelos e um cheiro nitroso característico.

2. Acontece algumas vezes decompor-se a nitroglicerina porco a porco, ocorrendo explosão espontânea. Esta alteração da matéria manifesta-se por uma reação acida que acelera o paquete de turnesol colocado nas caixas de dinamite. Se este fenômeno se produzir, misturar-se 5 gramas da dinamite suspensa com 300 °C de água destilada; filtrar-se e mantê-lo-se em ebulição, durante três minutos, e lixavigetar, n'um balão de longo colo.

No caso de haver verdadeiramente decomposição, os vapores nitrosos que se evol-
Vem do líquido avermelhado fortemente o jazal arul de tournesol suspenso sobre a boca do balão.

Se, pelo contrário, o jazal conserva a cor primitiva depois de ter permanecido por algumas horas na caldeira onde se guarda a Dynamite, ou se a eliminação das águas de lavagem não de logar a reação acida, a nitroglicerina não sofreu alteração alguma. Reconhecendo-se alteração é necessário destruir a Dynamite, o que se faz queimando-se por pequenas porções (100 gramas) comunicando-lhe o fogo por meio do cordão Dickford, com todos os cuidados indispensáveis.

XIV.

Propriedades da Dynamite de base inerte.

Propriedades físicas.

A Dynamite de base inerte é uma substância cor de tijolo, de consistência semelhante ao pó, sem lâmina, sem vestígio de toque, de consistência de massa fina, nasca ao toco, inodora. Exerce sobre a economia animal ação anestésica, de nitroglicerina, e compartilha da maior parte das propriedades físicas deste.

A nitroglicerina congelando a +8°, a Dynamite transforma-se a esta temperatura, em massa dura que se faz desgelar observando certas precauções. Para operar sobre grandes massas empregam-se caixas de folha de ferro, formadas por dois cilindros concêntricos; no seu interior coloca-se a Dynamite gelada e no espaço compreendido entre os dois deitam-se água morna. Quando se aperca sobre pequenas massas basta que o operário, antes de empregar os cartuchos gelados, os demore por algum tempo na algebrina.

A Dynamite gelada é menos sensível ao choque do que no estado mole; a sua força explosiva é a mesma mas precisa-se, para desenvolvê-la, ação mais energética.

Quando a Dynamite gelada a nitroglicerina se separa-se do observante, reumindo-se em volta d'uma infinitude de pequenos centros de cristalização. Este fenômeno pode ser o obstáculo muito sério para a conservação das Dynamites, mas hoje acha-se remediado desde da invenção da gelatina explosiva, que é uma Dynamite de base activa, muito estável.
XV.

Propriedades químicas e mecânicas.

As propriedades químicas da Dinamite de base inerte oferecem grande analogia com as da nitroglicerina.

Pelo que respeita às propriedades mecânicas, parece que na Dinamite a mistura da substância sólida favorece a estabilidade do produto, diminuindo a sensibilidade de e torna portanto menos perigoso o efeito do choque.

Ação do calor. O calor não produz, em geral, nem diretamente nem indiretamente a explosão da Dinamite bem preparada. Em contato com a chama ou com um corpo em ignição, a Dinamite pode lentamente e sem explosão ar livre. Sucedendo o contrário quando encerrada em espaços fechados.

Ação do choque. A Dinamite, contida num envoluto resistente, por explosão, quando submetida a um choque muito violento, Para que a detonação se produza ao ar livre é preciso que o corpo chochado seja muito duro e que a intensidade do choque não desça abaixo de um certo limite.

De muitas experiências feitas sobre a Dinamite conclui-se que esta substância constitui um dos explosivos menos perigosos abaixo do ponto de vista de transporte e manipulação. Esta a pressão deve acolher-se com certa reserva, pelo menos no tocante às questões militares, porque a partir de uma determinada distância (25 m) a Dinamite é sensível ao choque da bola de fuzil. As Dinamites, no sendo quimicamente puras, podem decolar-se espontaneamente.

Finalmente as experiências sobre os efeitos da combustão e do choque têm muitas vezes fornecido resultados contraditórios.

XVI.

Fábrica da Dinamite de baseativa.

Entre as muitas e variadas Dinamites de baseativa, estudaremos apenas a gelatina explosiva, cuja Dinamite gomada, por ser, dos explosivos modernos, o que oferece não só maior força explosiva mas maior solidez garantia de segurança. A gelatina explosiva obtém-se misturando 90, 93 ou 95 de nitroglicerina com 10, 7 ou 5 de colhão.
Obtida a mistura intima destas duas substâncias junta-se-lhe camphora na proporção de 4% de modo que a composição definitiva é:

Camphora 4 parts
Gelatina explosiva 96 "

XVII.

Propriedades da gelatina explosiva

Propriedades físicas.

A gelatina explosiva é a nitroglicerina pura, num estado gelatinoso por se lhe ter adicionado colôdio, isto é algodão polvoro dissolvido em álcool etérico.

Conforme as condições da mistura, pode-se obter um produto em estado xarope, ou em estado gelatinoso, d'aspecto corriqueiro, oferecendo a resistência duma goma. É elástica, transparente e de cor amarela clara. A sua densidade é 1,6.

Pode cortar-se e submeter-se a uma pressão de 4,760 mm de milimetros quadrados de superfície sem que haja ecaussidão de nitroglicerina. Resistência melhor ao giro que a Dynamite ordinaria, mas quando gelada fica mais sensível ao choque, o que prova quanta o estado físico influi na sua insensibilidade. A gelatina, porém, mais facilmente que a Dynamite ordinaria e sem traços de ecaussidão.

XVIII.

Propriedades químicas e mecânicas.

Já vimos que a gelatina explosiva deriva da mistura de colôdio com a nitroglicerina: não experimenta decomposição espontânea e pode conservar-se dentro d'água.

Ação do calor: Em contacto com o lume arde tranquillamente e comporta-se como a Dynamite ordinaria: pode manter-se durante oito dias consecutivos à temperatura de 70°C sem que demoeie decomposição. Aquecida lentamente atinge 240°C. Sucedem o mesmo quando a temperatura se eleva bruscamente, ao mesmo grau. Quando porém, contiver 4% de camphora, embora a temperatura se eleve a 300 ou 330°C, a explosão não tem lugar: elevando ainda mais a temperatura lança centelhas e arde tranquilimente. O mesmo sucede quando a quantidade de camphora é superior a 4%. nestes casos a gelatina etc.
flosiva, precisa de temperatura muito elevada para produzir explosão, consequência necessária de seu estado físico e da sua falta de porosidade. E' por isso que se torna necessário, para obter o máximo efeito, empreender um cartucho escava especial, contendo 20 grammas da composição seguinte:

Nitroglicerina........60
Nitro-hidro-cellulose.....40 - (1)

Comparado com a Dynamite No. 1 a forja da gelatina explosiva, em igualidade de circunstâncias, é, pelo menos, 1/2 maior que a d'aquella. Se a Dynamite No. 1 - 7 ou 8 partes de nitroglicerina consomem-se em fura forja e aquecimento da substância inerte.

(1) Pyroclino em que o algaão polvora é previamente tratado pelo acido sulfúrico num certo estado de diluição.

Temos notado que o algaão se apodera d'um numero desigual de equivalentes d'acido hipoamônico para se transformar em pyroclino. Por esta razão se encontram, num mesmo cartucho de algaão polvora Abel todas as variedades de algaão nitrado, desde a trinitro-cellulose até a cellulose pura. As mesmas desigualdades se notam ainda em maior grau no algaão polvora obtido pelo processo de Lenzh. Foi para evitar este inconveniente que os chimicos Siersch e Roth atacaram primeiro o algaão pelo acido sulfúrico diluido e o submetem depois à acção do acido azotico. Obtem-se assim um produto, cuja forja de exploso e reações quimicas levam a concluir que a cellulose ou um dos seus derivados chega a um alto grau de nitrificação. Este algaão polvora especial dá-se o nome de nitro-hidro-cellulose. É um corpo polverizado e dece ao tacto: examinado ao microscopio apresenta ainda a structura do algaão ordinario. Pode observar e retirar nos seus poros menos nitroglicerina de que o algaão polvora d'Abel, mas não tem tendência a produzir gelatina explosiva unindo-se a nitroglicerina. A mistura, nas proporções que foram indicadas, adquire hoje para a confecção do cartucho escava.

Pode dizer-se este produto maior densidade de que é mistura da nitroglicerina e algaão polvora Abel, conseguindo-se deste modo accommodar 20 grammas nos cartuchos que apenas podiam conter 15 a 17 grammas de outros compostos.
D'outras experiências não menos interessantes tem-se concluído que para produzir um mesmo efeito é necessário um peso:

1. De gelatina explosiva
2. De nitroglicerina
3. De Dynamite Nº 1
4. De Dynamite Nº 2 ou 3
5. De pólvora de minas

Ora sendo a densidade destas substâncias as seguintes:

Gelatina explosiva]
Nitroglicerina...]
Dynamite Nº 1...]
Dynamite Nº 2 ou 3...]
Pólvora de minas...]

Vê-se que além de todas as vantagens, o emprego da gelatina, exige guros de broca. Se um mesmo volume se contém maior quantidade de substância explosiva.

XIX.

Aplicação da Dynamite

A Dynamite produz efeitos de ruptura extremamente poderosos, pode por isso ser de grande vantagem para a exploração das minas e para os usos militares.

A ação fracturante e o resíduo sólido que deixa a Dynamite de base inerte impe...
assim a escrava introduz-se na massa do cartucho, (Fig. 42) de modo que uma parte da cápsula A & B excede o nível superior da DYNAMITE. Feche-se nuvho o cartucho, ligando a camisa ao cordão Bickford em C por meio de fio de lã. Assim se mantém invariávelmente a cápsula no seu lugar.

Se a DYNAMITE estivesse gelada a cápsula deveria conter maior quantidade de fulminato (2º).

Preparado assim o cartucho escrava, carrega-se, por exemplo, um gyro de mina dispor ao carro como se vê na Fig. 36. Colocase o primeiro cartucho P1 e confirme-se com o calcador de madeira, até que, rompendo-se o enovelado, a DYNAMITE se aplicasse contra as paredes do gyro: procede-se do mesmo modo com os cartuchos P2, P3 e introduzi-se depois o cartucho escrava Z.

Quando a DYNAMITE tiver de empregarse em presença da água é necessário dispensar todo o cuidado à impermeabilidade do cartucho escrava. Para este efeito o cordão Bickford costuma ter um revestimento hidrofugo e no ponto de mistura com a camisa do cartucho aplicase-lhe um conduto de brea, esta ou sebo.

Com a gelatina explosiva procede-se do mesmo modo, com a diferença da cápsula ser carregada com nitro-hidro-cellulose. Experiências feitas na França e na Áustria mostram que a DYNAMITE pode vantajosamente ser aplicada aos usos da guerra. As galássadas melhor estabelecidas podem ser destruídas completamente pela DYNAMITE. Empregase para isso um salchicho de boa contendo a carga explosiva, que deve ficar sempre em perfeito contacto com o objecto que se pretende destruir. O salchicho deve ter o comprimento da brecha que se deseja produzir. Conforme a espessura dos postes e a solidez da galássada, a carga de DYNAMITE, por metro corrente de salchicho, varia de 2,500 a 6,2. Se existir uma banquet de terra petrar da galássada aumenta-se ainda a carga 3/4.

Na guerra francu-prussiana empregou-se muito a DYNAMITE na destruição das linhas ferreas, casas, muros etc. Vejamos como se procede geralmente nestes trabalhos.
Linhas ferreiras. Para interromper uma linha ferrovia basta empregar duas cargas de 200 gramas de dinamite cada uma, colocadas interior e exteriormente à via, como se vê na Fig. 43, ficando um fio fuzilado da junta dos raios.

Dispostas assim as cargas na garganta dos raios cedeem-se com balasto.

Os rastilhos devem ter o mesmo comprimento para que a explosão da carga seja simultânea. Com esta carga dupla produz-se na via uma interrupção de 1,50 de comprimento.

Se não quisermos dividir a carga empregaremos as 400 gramas de dinamite, colocando-a exteriormente na junta dos dois raios. Empregando cargas duplas de 200 gramas, dispostas alternativamente no prolongamento dos raios, sobre as travessas onde estão as juntas, mas deixando livre uma junta sobre cada três, se tiverem-se, com 150 gramas duplas, 90 a 120 cm. da via.

Aguilhas. A destruição das linhas ferreiras deve sempre fazer-se longe das estações, nas curvas, nas bifurcações e nas agilhas.

Para destruir uma agulha basta dispor cargas duplas de 200 a 300 gramas como se vê na Fig. 44.

Material das garens e material rolante.

Para destruir as plataformas, furem se girar de modo que os raios não sigam correntes sendo os da via gica, levanta-se uma porção da plataforma e é colocada uma carga de 300 gramas, sobre a pista dos rodízios.

Uma carga de 200 gramas é bastante para inutilizar um depósito d'água.

Com uma carga de 400 gramas destróe-se o eixo de rotação dos fios de sinalização.

Uma carga de 200 gramas pode fazer de serviço uma locomotiva, empregada contra uma das bielas: 500 gramas determina a rotação dum engren.

Vicinhas e vagões. Carga de 100 gramas contra cada uma das estacas que ligam as rúas às caixas de endereços: 500 gramas contra as rúas junto de 17.
seu ponto de uniao às caixas.

Linhas telegraficas. Uma carga de 200 gramas basta para destruir um poste telegrafico. Emprega-se a mesma carga para destruir de linha subterranea.

Muros isolados. (fig. 45)

1.° Muro de 1 a 1,50 de espessura, o maximo. Emprega-se cargas alugadas colocadas junto ao foro do muro, cobertas com terra, variando as cargas com a espessura da alvenaria.

Para muro de 0,50 de espessura 4 a 5 por metro corrente

" " 0,75 " 6 a 8 " "

" " 1 " 9 a 12 " "

Pode reduzir-se um pouco as cargas se ficarem introduzidas no solo a uma profundidade de 0,10 a 0,20.

O efeito da carga não se estende além das suas extremidades.

Quando abater o muro em toda a sua altura e não obter um simples buraco, é preciso dar à carga um comprimento quasi igual à altura do muro.

2.° Muro de 1 a 1,50 de espessura. Empregam-se cargas alugadas, introduzidas no muro, junto ao foro, a uma profundidade de 1/10 da espessura do muro, ou então sustentadas ali por escoas.

A ranhura para colocar a carga pode abrir-se ao foro ou pelo emprego de uma carga previa de 600 gramas por metro corrente.

Muro de 1 a 1,50 de espessura - Carga de 4 a 6 por metro corrente.

" 1,20 " " 6 a 7 " "

" 1,30 " " 7 a 8 " "

" 1,40 " " 8 a 10 " "

" 1,50 " " 10 a 12 " "

Pode reaparecer a carga deixando-se metros a metros um intervallo de 0,40. O efeito dura-se ainda sentir em todo o comprimento.

3.° Muro de 1,50 a 2,50 de espessura. No este caso empregam-se cargas concentradas de 2,500 a 7", devendo ficar introduzidas no seio do muro. Se todo
o muro deve ser destroçado, colocam-se os gornilhos a uma distância um dos outros igual à espessura do muro.

Escavações. A carga C em quilogrammas causará de produzir uma escavação V, expressa em metros cúbicos, é - \(C = 1,18V \).

Muros de revestimento. (Fig. 46)

Introduzirem-se no seio do muro a ½ aproximadamente da sua altura a contar da base e de modo que fiquem em contacto com as terras, cargas calculadas pela fórmula

\[
C = \frac{3}{2} \times e^3
\]

sendo \(e \) a espessura do muro. O afastamento máximo das cargas deve ser 2
dias.

Abóbadas. Empregam-se cargas concentradas aplicadas livremente no efeito.

Abóbada de 0,30 de espessura, - carga 1k.

\[
\begin{array}{l}
0,30 \quad 1k \\
0,60 \quad 3k \\
0,90 \quad 5k
\end{array}
\]

A abertura produzida tem um diâmetro igual à espessura da abóbada. Para obter um rascunho contínuo multiploquem-se as cargas, introduzindo-as na abóbada ou cobrindo-as com saídos de terra, deixando-as espaçadas a uma distância dada da espessura da abóbada.

Deve antes preferir-se para fazer um rascunho contínuo empregar cargas alongadas e cobrir-las.

O caso de abóbada de 0,30 de espessura - carga 2k por metro corrente.

\[
\begin{array}{l}
0,60 \quad 5k \\
0,90 \quad 8k
\end{array}
\]

Se as cargas girarem introduzidas numa ranhura esculpida na abóbada, podem reduzir-se a metade.

Casado. Para demolir uma casa de 5,50 de comprimento tendo as joalhadas 0,35 de espessura bastam 6\(\times \) de dynamite colocadas livremente no ressochão.

Para demolir uma casa de 4,80 de comprimento, 4\(\times \) de largura com joalhada 0,4.
Se espessura empregam-se 12.500 de dynamite respostada no interior, ao longo do pé das paredes, conservando abertas portas e janelas.

Se desarmos as portas e janelas bastam 500 grammas por metro cúbico da casa.

Pontos demadeira: Abatem-se as estácas pelos emprego de cargas longadas, calculadas na hipótese de que um fôrmo de esquadria $\frac{a}{b}$ é destruído por uma carga $C = 40 a b^2$ aplicada no fôrmo mais largo a.

Para quebrar um poste ou uma arvore de diâmetro d é necessária uma carga

$$C = 40 d^3$$

Bocas de Gato. Para destruir uma boca de gato bastam empregar 100 grammas de dynamite tendo fechado o agasalho da culatra, ou então empregar dois cargas cada uma de 50 grammas, de sorte que uma fique junto à culatra, outra na altura dos munhões, tendo a cuidado de fechar a boca de gato com um tapa de madeira.

Pode também colocar-se uma carga de 3 a 5 sobre um dos munhões e cobri-la com alguns sacos de terra; neste caso com a destruição de munho destro em tambem o sejaro.

XX.

Fulminato de mercurio

As matérias formais necessárias para obter o fulminato de mercurio são: o mercurio, o ácido nítrico e o álcool.

Prepara-se introduzindo um balão de vidro de 6,450 de mercurio puro, juntando-se-lhe 5,400 de ácido nítrico também puro, de 36 a 40° B, e coloca-se em seguida o balão em banho de areia, sebaixo d'uma chaminé com boa viragem, até que desapareçam os vapores nítricos, indicio de que a reação está completa. Se jorventura houver ainda no balão algum mercurio sobre que não tenha reagido o ácido nítrico, toma-se o balão pelo colo, com todo o cuidado, e agita-se, colocando o de novo sobre o banho de areia até se completar a reação. Seja que isto tenda sucedido, retire-se o balão e deixe-se arrefecer até 60° C.

O agasalho para obter o precipitado do fulminato de mercurio, consiste de dois balões de vidro Δ, (fig. 47) colocados sobre apoios, comunicando com os rejunto geradores ou condensadores B, que contêm água. O último dos condensadores é um
vão d’um tubo C, que
junciona como chami-
ne para dar salda aos
gares, que são muito in-
flamaveis e ataciam os
organos respiratorios.
Os gares são o ácido car-
bonico, bicegdo de aroe,
ether nitrico e acetico. Cada refrigente tem inferiormente uma terméria D para
esgotar os liquidos. A comunicações entre as diferentes partes do apparelo é
estabeleceda por tubos arqueados E assentando pelas extremidades em collares de
chumbo adaptados às aberturas dos baloes de vidro e dos refrigentes. As superfici-
es de contacto entre os collares e os tubos são lubrificadas com enxofria de galinha.
Este sistema permite estabelecer e interromper rapidamente as comunicações, o
que é de grande vantagem.

Quando se tura qualquer dos tubos E, deve logo cobrir-se com campanulas, que se
têm de prevenção, as aberturas que daug a gare. Em cada balao A introdu-
serem-se 6° de alcool puro deminho, ou 5° de alcool e 1° de aldehído, tajando-os im-
mediatamente e só se destajam quando se lhe junta o nitratd de mercurio que,
como dissemos deve estar a temperatura de 60° C. O nitratd de mercurio juntase
lentamente, empregando para isso um fumil. Deve evitar-se o mais possível res-
gerir os vapores que se desenvolvem.

Feita a mistura e tajado o apparelo, a reacção entre o nitratd de mercurio e o alcool
deve jacer-se sem necessidade de agitação nem de calor extermo. Depois de duas horas
tem-se precipitado no seio do liquido um pó amarellado que é o fulminato de mercurio.
Separam-se do apparelo os baloes A, tajando logo com as campanulas as aberturas
dos refrigentes e destas se o liquido que sobrenada ao fulminato.

Lavagem do fulminato de mercurio. Depois de descantado o liquido lavar-se o
fulminato dentro do balao, juntando-lhe agua distillada quente, agitando o doc-
ument. Repeate-se a operação cinco vezes, removendo as aguas de lavagem ao liqui-
do obtido por decantação. O coto se move água no balão e deixe-se em repouso por espaço de uma hora. Continuam depois as lavagens, sem aproveitamento de águas, até que haja perfeita neutralização, isto é que no líquido se não senneie em presença do papel de lournesol n'estigisse algum d'ácido.

Descanta-se a última água, molhe-se o gulminato em grascos de vidro, guardando-os em lugares gregos e sem luz do sol.

Por caudela convém conservar o gulminato nos grascos de porco's d'agua.

Aproveitamento dos líquidos. O líquido contido nos refrigernantes renune-se às águas de lavagem e trata-se-se pela cal extinta, em grandes bacias, ao ar livre. As bacias são cobertas com uma tampa de madeira atravessada por um ganil por onde se introduz a cal quente e aquecendo a mistura, (germei d'uma espátula), até que o líquido tenha reação alcalina. Terminado este tratamento o líquido introduz-se n'um alambrique, obtendo-se por distillação, o aldeído em estado de servir nas operações subsequentes, se no pesa ether marcar 32°.

XXI.

Propriedades do gulminato de mercurio.

Propriedades físicas

Os cristais do gulminato de mercurio frequentemente reunidos em forma de agulhas, são quase insolvíveis na água fría, sendo necessário 130 partes de água quente para dissolver 1 parte de gulminato. São d'um sabor doce e metálico, extremamente venenosos.

Propriedades químicas

Kéckel, ajoelhando-se nas reações do gulminato de mercurio sobre o chlore, o brom, e o sulfúrio, mostrou que a fórmula química é:

$$C^2(AzO_4)(C^2Az)Hg^2$$.. (1)

que pela decomposição dá

$$2Hg + 4CO + 2Az$$.. (2)

Pela fórmula (2) vé-se que nos produtos da decomposição há falta de oxigênio para transformar em ácido carbonico o oxido de carbono, convindo adicionar o gênero mistura de chlorato de potassa ou de nitrito de potassa, sendo preferível este último. Se na fórmula (1) introduzirmos salitre que nos fornecêa mais quatro
equivalentes de oxigénio teremos:

$$C^2(AxO^3)(C^2Ax)H_2 + 0.67KAxO^5 = 2Hg + 4CO^2 + 0.67K + 0.67Ax$$

Propriedades mécanicas.

A propriedade capital do gúmlinato de mercurio consiste na extrema facilidade com que detona. Um pequeno choque é bastante para produzir a explosão violenta e quase instantânea, tornando-se por isso um emprego vulgar nas escravas de percussão. E também muito sensível á gásica de indução, e por isso, portanto, para escravas eléctricas.

XXII.

Aplicações do gúmlinato de mercurio.

O principal aposição do gúmlinato de mercurio é para escravas, misturando previamente com salitre regrado. A proporção deve ser 1 de salitre por 4.5 de gúmlinato de mercurio.

O misturão do gúmlinato de mercurio com o salitre é feito em algumas fábricas misturando com uma espatula e 10 seco das duas substâncias. Deste modo ferão, não pode formar-se bem intimamente a mistura, e a uniao ficará imperfeita, dando ao logar a muitas irregularidades e até a galhas na inflamação em virtude da desigualdade do salitre e da sua acumulação em algum ponto de preferência.

A mistura deve, pois, ser feita pelo modo seguinte:

Parece se porções a misturar na fórmula de 4.5 de gúmlinato e de 1 de salitre, seita-se este em uma grande casueta de porcelana, e ajunta-se lhe água a servir até formar uma solução grossa, e seguidamente adiciona-se lhe pouso a porção de gúmlinato, remexendo com uma espatula de ovo.

Completá-se a mistura sobre um pequeno taboleiro, regando a massa com água destilada, se for preciso, para que não endurecer; e da-se por terminada quando apresentar uma cor geral e uniforme. Enfim, passa-se a massa por porções para pequenos oleados, que são postos sobre banho de água a servir, até encerro completo da mistura.

Os fragmentos emutos são lançados n’un pequeno peçêiro, fig. 43 juntamente
com uma aroela de madeira, obtendo-se pelo movimento
de saemem sobre uma grande demadeira assecou em uma
evissa, um produto granulado e em pó.

O movimento é dado por um excentro comunicando com uma
biela e movida por máquina,
executando-se o trabalho em casa işa
lada e completam Jisperidão de gente.

O produto recobrido é enxuto sobre bucho de água, em estufa a 30°C, e depois
pode ser guardado seco em grãos perfeitamente rotados.

XXIII
Picrates.

O ácido fíricio e a maior parte dos sais que se ele forivam, sobretudo os de
potássio e amônia constituiem substâncias explosivas com aplicação aos
usos da guerra. Pode obter-se o ácido fíricio tratando o ácido fírencio, legera-
mente aquecido, pelo ácido nítrico concentrado; formase uma pasta amarela
escura, muito pouco solúvel na água fria, solúvel na água quente e cristal-
lísa em lamínas de cor amarela clara.

Quanto ao ácido fírencio, obten-se facilmente dos oleos de alcatrão, da builha
que distilla em entre 150 a 200°.

A preparação de este produto da distillação com uma dissolução de potássio mu-
to concentrado; a massa cristalina retoma-se pela água, que não dissolve-se
não o picrate de potássio. Pelo ácido clorhídrico precipita-se então o ácido
fírencio sob a forma de cristais brancos pouco solúveis na água, mas muito
no álcool e no etíreo.

Picrates de potássio. Obten-se tratando a quente o carbonato de potássio em
dissolução pelo ácido fíricio. Dissolvido também em água quente. Em-se então
o picrate de potássio que se deixa em forma de agulhas duma bella cor amarela.

Picrate de amônia. Prepara-se saturando diretamente a quente o ácido
fíricio por uma solução concentrada de amônia, em tratoando o ácido fíricio
pelo carbonato d'amônia.

Qualquer destes produtos depois de secos detonam com violência quando se aquece progressivamente até 310°; um simples choque ou o contacto d'um corpo em ignição produzem o mesmo efeito. Se, porém, o póierato contém 15% de humidade é impossível fazer o detonar pelo choque e o contacto d'um corpo em ignição só produz uma desflagração local.

A fórmula da decomposição do póierato de potassa, segundo Berthelet e a seguinte:

\[C^4H^8(NaO)^3(KO)^2 = 3Na + 4CO + KO.CO^2 + 2HO + 2C \]

O póierato de potassa tem sido empregado, a título de ensoio, na Inglaterra e nos Estados Unidos para carregamento dos projecteis destinados a ferir as couraças dos navios. O que se nota é que o póierato não contém a quantidade de oxigénio necessário para queimar todo o carvão e por isso carece de ser misturado com substâncias oxidantes.

As polveras de Désignolle e Fontaine são formadas pela mistura de póierato e salitre ou clorarato de potassa.

Els diversos misturas eram feitas nas proporções indicadas no quadro seguinte:

<table>
<thead>
<tr>
<th>Componentes</th>
<th>Polvora para</th>
<th>Polvora para</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tarredos e</td>
<td>armas de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>proyecteis</td>
<td>gago.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cós.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Póierato de</td>
<td>55</td>
<td>16 4</td>
<td>Os materiais primos húmicos das galgas, encascadas nas galgas, encasadas, encasadas, seguido o processo geral de solv.</td>
</tr>
<tr>
<td>potassa</td>
<td>50</td>
<td>9 6</td>
<td>n. ord.</td>
</tr>
<tr>
<td>Salitre</td>
<td>45</td>
<td>74 4</td>
<td></td>
</tr>
<tr>
<td>Carvão</td>
<td>50</td>
<td>77 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 2 10 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Capítulo 7.
Munições

I.
Cartuchos das bocas de fogo.

Designam-se, em artílheria, sob a denominação de munições, os cartuchos e projeis das bocas de fogo e das armas portáteis, bem como as respectivas escovas e espoletas. Chamam-se escovas os artigos destinados a inflamar a carga das armas de fogo. A designação de espoletas é hoje oficialmente consagrada aos artigos destinados a produzir a inflamação da carga explosiva dos projéteis.

Cartuchos das bocas de fogo. Constam d’un saco de tela de forma cilíndrica, chamado camisa onde se contêm a pólvora. Na confecção dos cartuchos emprega-se a serafina e a sericina, a que também se dá o nome de tela amiantina.

A serafina é um tecido de lã, a sericina, empregada exclusivamente nos aperfeiçoamentos de campanha, é um tecido feito dos resíduos da seta. (1)

A serafina emprega-se nas camisas dos cartuchos de todas as bocas de fogo estradas e também d’alma lisas, quando atiram com bala. Como a serafina está muito sujeita a ser atacada pela traça, convém premunir contra esta causa de ruína. Se a serafina é de cor verde, a traça não a destroce, porque na cor verde entra o arsênico de cobre que é venenoso. Prefere-se por isso, para as camisas dos cartuchos a serafina verde.

Quando, porém, for d’altra cor, recomenda-se o emprego d’un banho de acetato de chumbo ou sulfato de cobre em que se mergulha o tecido antes de fabricar os cartuchos. Para isso toma-se um péso de acetato de chumbo igual a um quarto do péso da serafina que se pretende farJaar, introduz-se numa caldeira, de ferro ou de cobre, e dissolve-se em 100 vezes o seu péso d’água e mais pô de sal, de tal modo que o lixo o escorregue a ebulição e mergulhe-se a serafina no líquido, introduzindo-a

(1) Os teores de salva em peças d’alma lisas empregam-se cartuchos feitos de tecido de algodaão.
jerramienta n'um cesto de vime, para evitar o contacto com as paredes da caldeira, que se acham a uma temperatura elevada. Se se aplica o sulfato de cobre, por cada 100 litros d'água juntam-se 5 á sulfito. Uma infusão de coloquintida em água e mergulhar n'ella as camisas dos cartuchos dá bons resultados, porque são um tal amargo a infusão destas substância vegetal, que animal algum roedor toca nos objectos impregnados n'ella.

Se nos uma das condições indispensáveis de camisas dos cartuchos a pónea combustibilidade, deve regurar-se o emprego do banho d'acetato de chumbo, porque, se evita a traça, pela facilidade com que o oxigénio de chumbo se decompõe, feixar-se-la mais combustível. (1) O acetato d'alumina ou mesmo uma solução d'alumínio, deve dar bons resultados.

Dimensões e fabrico dos cartuchos. As dimensões dos cartuchos variam com as cargas das bocas de fogo, mas todas elas são formadas d'un rectangulo e d'uma base circular. Tanto no retanho como na base traçam-se com os respectivos moldes as linhas de costura. Ajustam-se depois segundo essas linhas os menores lados do retangulo e esprem-se, juntar-se os filamentos fíos de as costuras para o lado da avesso. Com a base serrestica-se do mesmo modo.

As dimensões das camisas dos cartuchos para as peças estruturadas d'artilharia constam da tabella A.

Verificação das camisas dos cartuchos. A verificação pode fazer-se com grande facilidade do modo seguinte:

Mostram-se na borda d'uma meia dos traços tendo entre si um intervalo igual à metade do desenvolvimento do retangulo contado entre as linhas de costura. Acham-se as camisas dos cartuchos e observam-se as generatrices extremas coincidem com os dois traços que correspondem ao calibre respetivo. A tolerência é de 1 mill, apenas para mais ou para menos. Esta operação pode também fazer-se empregando moldes correspondentes aos diversos calibres. Deve também observar-se se as costuras estão bem costas e em tudo conforme com a camisa d'um cartuche modelo.

(1) Para fechar incombustíveis os cartuchos de serafina, mergulhá-los-se numa solução de fosfato d'amónia.
Tabella A

<table>
<thead>
<tr>
<th>Designação</th>
<th>Diâmetro dos almas em milímetros</th>
<th>Calibre</th>
<th>Peso de carga em gramas</th>
<th>Caneta em milímetros</th>
<th>Excentricidade em milímetros</th>
<th>Diâmetro de base em milímetros</th>
<th>Calibre</th>
<th>Peso de carga em gramas</th>
<th>Caneta em milímetros</th>
<th>Excentricidade em milímetros</th>
<th>Diâmetro de base em milímetros</th>
</tr>
</thead>
<tbody>
<tr>
<td>86,5</td>
<td>8°(M)</td>
<td>330</td>
<td>154</td>
<td>290</td>
<td>110</td>
<td>84</td>
<td>64</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>8°(C)</td>
<td>550</td>
<td>197</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>107</td>
<td>142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>8°(C)</td>
<td>500</td>
<td>117</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>97</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121,3</td>
<td>12°(C)</td>
<td>1100</td>
<td>216</td>
<td>397</td>
<td>144</td>
<td>118</td>
<td>109</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>12°(S)</td>
<td>1300</td>
<td>236</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>129</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>12°(P)</td>
<td>1400</td>
<td>245</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>131</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152,7</td>
<td>15°(P)</td>
<td>2600</td>
<td>289</td>
<td>415</td>
<td>172</td>
<td>146</td>
<td>168</td>
<td>203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82,6</td>
<td>8°(MP)</td>
<td>500</td>
<td>198</td>
<td>274</td>
<td>105</td>
<td>79</td>
<td>110</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>9°(MK)</td>
<td>1570</td>
<td>320</td>
<td>311</td>
<td>119</td>
<td>93</td>
<td>225</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>1500</td>
<td>310</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>215</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>174</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>71</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carregamento dos cartuchos. A pólvora deve ser pesada, algumas vezes, porém, determina-se a carga empregando medidas de cobre ou de folha de Flandres, tendo exteriormente marcado o peso da pólvora. São certa qualidade que podem conter. Este modo de proceder muito expedito mas pouco rigoroso, não se deve empregar senão para os tiros de salva.

O cartucho, depois de receber a pólvora, é fortemente apertado com um atilho de giro de vela, e verifica-se-se este giro na altura conveniente e se o cartucho tem o diâmetro regulamentar. A esta última operação empregam-se fios sadeiras. O carregamento dos cartuchos das peças de aço de costa de 15°28(MK) se pratica-se do modo seguinte:
Enrolar a camisa sobre si mesma, para o lado de fora, até chegar quasi ao fim, e assentá-la sobremesa baixa ou no chão. Em seguida coloca-se sobre o fundo da camisa a primeira camada de grao de pólvora gorda, depois coloca-se a segunda e assim sucessivamente, desenrolando a camisa do cartucho à medida que se vão sobrepondo as camadas. O número de gorgulhas, por camada, é de 12 para as peças de 15° e de 17 para as de 23°. Quando se tem colocado o número de camadas, que se julga conveniente, põe-se o cartucho no prato de uma balança e em outro coloca-se uma camisa para para e o peso correspondente à carga. Completa-se então o peso acabando de encher o cartucho grao, a grao, ou com fragmentos de grao se for preciso. Os fragmentos de grao devem ficar no centro da camada incompleta e correspondendo ao atilho. Na ocasião de carregar a boca de fogo dão-se dois golpes em ângulo no fundo do cartucho e abate-se o bocado cortado da camisa sobre a base de triângulo formado: esta operação tem por fim facilitar a inflamação da carga.

Conservação do cartucho. As camisas dos cartuchos são guardadas em maços, por espécies e calibres, contados e numerados. Os de lã se armazenam inúmeros vezes. Os cartuchos carregados das peças de costa recomendam-se que sejam guardados em caixas de tijos. As cargas provisoriamente adotadas para as bocas de jogo estriadas, no tiro de bala, constam da tabela seguinte:

<table>
<thead>
<tr>
<th>Bocas de jogo</th>
<th>Qualidade da pólvora</th>
<th>Carga máxima (gramos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De bronze estriadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8º campanhã</td>
<td>8º</td>
<td>550</td>
</tr>
<tr>
<td>de montanha</td>
<td>8º</td>
<td>350</td>
</tr>
<tr>
<td>12º</td>
<td>8º</td>
<td>1,300</td>
</tr>
<tr>
<td>12º</td>
<td>12º</td>
<td>1,400</td>
</tr>
<tr>
<td>15º</td>
<td>12º</td>
<td>2,600</td>
</tr>
<tr>
<td>De aço estriadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8º campanhã</td>
<td>8º</td>
<td>455</td>
</tr>
<tr>
<td>de montanha</td>
<td>9º</td>
<td>F</td>
</tr>
<tr>
<td>12º</td>
<td>9º</td>
<td>E</td>
</tr>
<tr>
<td>12º</td>
<td>12º</td>
<td>G & G</td>
</tr>
<tr>
<td>15º</td>
<td>12º</td>
<td>1,200</td>
</tr>
<tr>
<td>18º</td>
<td>12º</td>
<td>1,200</td>
</tr>
<tr>
<td>De aço estriada decoração</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8º campanhã</td>
<td>8º</td>
<td>3,500</td>
</tr>
<tr>
<td>de costa</td>
<td>8º</td>
<td>4,500</td>
</tr>
<tr>
<td>9º</td>
<td>8º</td>
<td>38,000</td>
</tr>
<tr>
<td>12º</td>
<td>9º</td>
<td>38,000</td>
</tr>
<tr>
<td>15º</td>
<td>12º</td>
<td>38,000</td>
</tr>
<tr>
<td>18º</td>
<td>12º</td>
<td>38,000</td>
</tr>
</tbody>
</table>

O carga para salvas é de 500 gramas de pólvora. C. para todas as bocas de jogo de campanhã de 8º e 9º e de 330 para as de 8º de montanha.
Seções d’alma lisa

As seções d’alma lisa, hoje sem importância depois dos avanços da artilharia moderna, o peso das cargas varia para cada calibre, conforme o efeito que se deseja obter. Geralmente, no tiro direto o peso da carga era igual a 1/2 do peso do projétil.

Tabella das cargas dos morteiros

<table>
<thead>
<tr>
<th>Morteiros</th>
<th>Ólotos</th>
<th>Cargas em gram.</th>
<th>Polvora</th>
<th>Distâncias</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>De 22°</td>
<td>45°</td>
<td>500</td>
<td>A</td>
<td>800 m</td>
<td>A carga deixa-se a granada na câmara do morteiro.</td>
</tr>
<tr>
<td>n. 27°</td>
<td>45°</td>
<td>1.200</td>
<td>A</td>
<td>900 m</td>
<td></td>
</tr>
</tbody>
</table>

Projecteis para bocas de fogo estriadas.

Os projecteis empregados nas bocas de fogo estriadas são:
- Granadas ordinárias.
- Granadas com balas.
- Lanternetas.

As granadas ordinárias e granadas com balas recebem uma carga explosiva, cujo peso varia com o calibre. As granadas com balas e polvora fica encerrada num tubo de cobre, ditos tubo de carga. A tabella seguinte mostra a carga explosiva correspondente aos diferentes calibres.

Carregamento das granadas com balas. O modo de carregamento das granadas com balas das peças de 6° e 8° é diferente do das de bronze de 8° e 12°.

Para carregar as primeiras rosca-se no abalho da granada o agaparelho representado na fig. 49.

O abaixo da rosca há dois orifícios de diâmetro superior ao dos balas e que têm o interior do fio.

Em comunicação com o interior da granada.

A haste massica cilíndrica por que termina o agaparelho, é destinada a reservar no interior do projectil e na direcção do eixo um vazio para o tubo de carga.
<table>
<thead>
<tr>
<th>Espece de bocas de fogo.</th>
<th>Projeteis.</th>
<th>Carga explosiva em gramas.</th>
<th>No. de balas e percentagem de cada granada.</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE 8° (MP)</td>
<td>167 (FN)</td>
<td>16.20 a 16.50 balas de chumbo, cada uma 14 gramas.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AE 9° (MK)</td>
<td>225</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BEC 8°</td>
<td>200 (FF)</td>
<td>18 balas pesando cada uma 14 gramas.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BEC 12°</td>
<td>500 (G)</td>
<td>35 balas pesando cada uma 14 gramas.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BFP 15°</td>
<td>1000 (G)</td>
<td>150 balas pesando cada uma 14 gramas.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AE 15° (MP)</td>
<td>1750 (G)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. de ferro endurecido</td>
<td>370</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. de aço.</td>
<td>1750 (G)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AE 28° (MK)</td>
<td>11500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. de ferro endurecido</td>
<td>2500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. de aço.</td>
<td>5500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Roscado o agoarelo na granada, separam-se do fogo as balas de chumbo que, com o auxílio dos orifícios de distribuição em camadas paralelas em volta da haste. Depois de passar-se pelo mesmo fogo a quantidade de enoxo de precisão para preencher os intervalos das balas. Desenroscado o agoarelo as balas ficam mantidas no seu lugar deixando o espaço livre para o tubo da carga. 36 as granadas de balas para
as peças de bronze procedem ao carregamento do modo seguinte: Introduza-se primeiramente pelo othal da granada, metade das balas, dê-lhe a areia agitando ligeiramente o projétil para que este se espalhe entre as balas; introduzirem-se em seguida as balas restantes agitando novamente o projétil; rasurando-se sima das balas o enxofre fundido bem líquido, girando com a granada em torno da aresta do fundo de modo a inclinar ligeiramente o eixo em todas as direcções para distribuir uniformemente o enxofre sobre as balas. Depois de solidificado o enxofre gica a granada nas condições de receber a carga explosiva.

Como nem todas as granadas terão a mesma capacidade, será preciso em algumas aumentar ou diminuir a carga explosiva. Em todo o caso a carga deve encher a granada até meio altura do othal, sendo depois confinada com um calcador de madeira. Devendo o carregamento girar bem compacto para resistir aos efeitos dos transportes.

A areia empregada nestas granadas tem por fim favorecer a dispersão das balas; o enxofre serve para as unir imediatamente que a pólvora se misture com a areia. Nas granadas ordinárias, a carga é introduzida por meio de um funil.

Quando se pretende empregar a granada ordinária como projétil incendiário substituir-se por parte da carga por 4 cilindros de pedra de jogo, ou qualquer outra composição incendiária. Neste caso, carrega-se a granada introduzindo apenas metade da pólvora, depois a matéria incendiária, e finalmente o resto da pólvora.

Projeteis para bocas de jogo Palma lisa

Gozer da manifesta importância que hoje têm as bocas de jogo Palma lisa, com exceção dos morteiros, falaremos dos projeteis destinaos áquellas bocas de jogo, conhecidos pelo nome de balas.

Os balas designavam-se antigamente pelo seu peso em libras; assim a bala de 24 era a que pesava 24 libras, isto é 11,016.

Atualmente os projeteis esféricos das peças lisas dos calibres regulares de 7, 9, 10, 11, 13, 15, 17 e 18 são designados pelo número de centímetros do diâme-
Diagrama das balas dos calibres regulares

<table>
<thead>
<tr>
<th>Calibres em libras.</th>
<th>Calibres em centímetros</th>
<th>Diâmetro das balas em milímetros</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>7,2</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>9,6</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>10,3</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10,3</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>13,2</td>
</tr>
<tr>
<td>24</td>
<td>15</td>
<td>14,5</td>
</tr>
<tr>
<td>36</td>
<td>17</td>
<td>16,6</td>
</tr>
<tr>
<td>48</td>
<td>18</td>
<td>18,4</td>
</tr>
</tbody>
</table>

Granadas. As granadas são projéteis esféricos sóis com um alhal de forma conica, onde se ajunta a espoleta de madeira, depois de introduzida a carga explosiva. A carga varia conforme o maior ou menor número de estilhaços a produzir. A granada era atirada pelos obuses.

Bombas. São, como as granadas, de ferro fundido, tendo junto ao alhal duas oreixas de ferro forjado, e, às vezes, no lado oposto ao alhal um foro para evitar que o projétil se quebre pela ação dos gases da pólvora na ocasião do tiro.

Peso das cargas de explosão

\[
\begin{align*}
\text{Cargas de guerra: } & \quad \begin{cases}
\text{Bomba de } 275 \text{ mil} & 1,300 \text{ a } 2 \text{ mil} \\
\text{Bomba de } 226 \text{ mil} & 0,750 \text{ a } 1 \text{ mil}
\end{cases} \\
\text{Polvora: } & \quad \text{G}
\end{align*}
\]

O efeito incendiário das bombas e granadas pode aumentar-se introduzindo-lhes, juntamente com a carga explosiva, alguns pedaços de vela-mistela, ou cilindros de pedra de jogo.

Lanternetas. As lanternetas empregadas nas fases de alma Lisa são de gota de ferro com fundos de madeira, contendo um certo número de balas de ferro fundido, dispostas em camadas.

O número e tamanho das balas varia com o calibre das boceas de jogo. Estas lanternetas são diferentes, pelo que respeita aos involucros e metal de que são feitas as balas, das do sistema Grammer e alemane que estudaremos na parte deste curso que diz respeito ao fábrico dos projéteis.

19º
Cuidados a observar no carregamento e descarregamento dos projectéis.

Carregamento. É necessário empregar alguns cuidados nesta operação para evitar perigos e garantir a boa execução.

Os projectéis depois de bem examinados são colocados em mosas apropriadas, assentando os esfericos em corações de coroa. A pólvora que, como dissemos, é introduzida por meio de um funil, deve chegar até meio altura dos olhares das granadas do sistema grande, limpeando bem os filetes das roscaras para que não fique ali grão algum de pólvora. Depois de introduzida a carga, rosca-se a espoleta no olhal da granada empregando a respectiva chave.

Procede-se do mesmo modo com as bombas e granadas esfericas, com a diferença de que a espoleta entra à mão e depois empregando o maço e o reforço.

Os projectéis das peças de costa, com exceção d'um certo número que constitui o armamento de segurança, devem carregar-se pronto antes de serem empregados, para evitar que a pólvora se deteriore.

No carregamento dos projectéis das peças de aço de 15 e 28 centímetros deve haver o maior cuidado em que a vedação dos canoas dos fundos seja completa. Consegue-se isto por meio das arandelas de chumbo colocadas entre as roscaras de ferro e as bases do projectil. Para carregar a granada ordinária de 28 cm. (fig. 50) tiram-se as roscaras do olhal e do fundo, limpam-se o interior do projectil com um rosecador, e as roscaras do olhal e do fundo, bem como o canal da cavilha de segurança, com os utensílios próprios que garem parte da oficina para carregamento.

Assentam-se depois a granada com a ponta para baixo sobre um suporte de ferro fundido e sustentam-se nesta posição por meio d'uma peixa chamada fixa-projectil, que é um arco circular com dois braços, cada um dos quais deve ser seguro por um homem durante a operação.

Coloca-se então em torno do orifício do fundo uma espessa camada de zaremba, mettendo à mão a rosha de ferro, aperfeiçoada quanto possível, depois acaba de rosca-se por meio da chave. Os bordos
La cabeça da roda devem ficar bem cravados na arandela de chumbo. Prepara-
da assim a granada introduzir-se pelo alho a carga explosiva e adaptar-se-lhe
a roda de rincão ou a espoleta de percuração. As outras granadas carregam-se
por um modo análogo sendo a carga explosiva introduzida pelo orifício da base,
depois de envernizadas as paredes interiores do projectil com goma-laca.

O descarregamento dos projectil. Para descarregar os projectil esféricos
tiram-se-lhes primeiro as espoletas, empregando o saco-espoletas. Se a espoleta
estiver partida obrigará a entrar no projectil empregando o repuxo e o mato do
madeira; vaza-se a pólvora, acabando por destruir os fragmentos da espoleta que
ficaram no interior do projectil. Se a espoleta resistir a ação do repuxo jura-se
o cano do misto com uma junta, lançando água sobre elle por diferentes vezes e
de pois de perfurada a abertura, introduzir-se água no projectil para destruir a pólvora.

Para descarregar as granadas ordinárias armadas com espoletas de percuração,
tirar-se em primeiro lugar o parachute por terra-linantente, vertendo antes sobre a
cabeça deste uma porção de gordura, serpentrizada ou de azeite, para lubrificar a
rosca, tirar-se em seguida a cavilha de segurança de depois o repuxo, acaban
do por extrair a caixa do percurtor ou ramo. e se por outro ja perceber, para vazar a
a carga explosiva. Se a granada, lançada por uma boca de jogo, não rebuentou,
procede-se do mesmo modo introduzindo previamente no respectivo canal uma nova
cavilha de segurança. Se for impossível esta operação por estar obstruído o ca-
nal, limpe-se este cuidadosamente e verta-se por elle água quente no interior do pro-
jectil para destruir a pólvora.

Para descarregar uma granada com balas que não tinha servido, desatar-se-ram
se as diferentes partes da espoleta de comunicação e tempo, começando pela cabeça
e vaza-se o projectil.

Se a granada foi lançada por uma boca de jogo e não rebuentou proceder-se na
descarga como acima, se disse, caso haja a certeza de ter adido o fulminato, no
caso contrário é necessário transportar a granada com o maior cuidado trazin-
do com a espoleta para baixo. Procure-se então introduzir na espoleta alcól
aquecido para dissolver o fulminato e destruir o misto, empregando depois água
até que este saia descorada. Nestas condições pode a espoleta ser desarmada sem perigo.

Granadas Semão. Empregam-se as granadas de mão no serviço de ataque e defesa das forças.

Estas granadas são pequenas esferas ócas, de ferro fundido, tendo 0,82 cm de diâmetro exterior e 0,60 cm de diâmetro interior com um otal de 0,49, (fig. 1). O vazio interior é cheio de pólvora, de modo que fique apenas espaço para a espoleta de madeira que deve produzir a explosão, sao da carga.

II.

Munições para armas portáteis e metralhadoras.

Cartuchos. O cartucho adoptado hoje para as armas portáteis é o cartucho metálico, que representa um complemento da arma de carregamento (pela culatra).

E com efeito com o emprego do cartucho metálico consegui-se a obturação completa, a ausência do encrustamento da câmara das armas e preservação do machinismo da culatra da ação dos gases.

Há muitas variedades de cartuchos metálicos, mas como nenhum dispensa o emprego de máquinas para o seu fabrico, reside nesta circunstância o seu grande movimento.

Há cartuchos metálicos forrados com lâminas e embutidos; soldados e enroscados; cônicos ou cilíndricos; lisos ou anulados. Alguns têm a escorva ao lado, outros em todo o fundo ou no centro. Os capôlulas guminantes são fixas e fechadas, ou abertas e gases de substituir. Finalmente uns são completamente de metal, outros de metal e cartas.

Condições a que deve satisfazer o cartucho metálico. Um bom cartucho metálico deve satisfazer às condições seguintes: 1° Não se inutilizar em cada tiro, isto é o envoluto alargar e aquecer sem estalar; a escorva poder ser substituída.

2° Não transmitten todo o calor ao cano das armas; o que exige que o envoluto seja cercado de uma substância má condutora do calor; 3° Não dar joga dos gases provenientes da explosão da carga, nem ingresso à humidade exterior.

Deve, portanto, o envoluto estar completamente vedado e ajustado na bala.
It is in all the metallic cartridges that these conditions are met, that is to say, they are made of copper and silver in various combinations. In our army, they are used in various forms, such as: cartouches, escuer, carga, and bala.

Fabrico do cartucho

Involucre ou camisa. En vernisase a gota de lata com um verniz especial composto de—

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laca em grão</td>
<td>1,00</td>
</tr>
<tr>
<td>Açúcar de mesa</td>
<td>0,13</td>
</tr>
<tr>
<td>Alcohol methylc</td>
<td>0,75</td>
</tr>
</tbody>
</table>

Corta-se em tiras, depois de seco o verniz, submetendose a gota de lata á tesoura mecanica. Estas tiras (Fig. 2) ficam com a largura FF de 0,057 e o comprimento de 0,050. A 0,05 da arista da tira metallica colha se uma tira de papel quando encurvada, tendo de comprimento 0,050 e de largura 0,067. Fica portanto a tira de papel FF, excendendo o metal 0,015. Para colar o papel á tira metallica empregase o frozeiro do seguinte:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laca em gotas</td>
<td>1,534</td>
</tr>
<tr>
<td>Sândaraca</td>
<td>0,732</td>
</tr>
<tr>
<td>Alcool methyloc</td>
<td>1,830</td>
</tr>
</tbody>
</table>

Feito isto, as tiras metalicas ja guarnecidas de papel, sao submetidas a uma forte pressão.

As tiras de papel quando se colam tem uma largura maior do que necessario, mas, depois de colladas regularisase sobre esta dimensão por mais da tesoura mecanica.

Sobre a face da tira metallic, que deve ficar em contacto com a polvera aplicarse o verniz seguinte:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casutelhosa em lagrimas</td>
<td>1,314</td>
</tr>
<tr>
<td>Oléo de napheta</td>
<td>0,568</td>
</tr>
</tbody>
</table>

e colla-se depois uma tira de papel de seda que o reveste.

As camisas são depois enrolladas á máquina e cola-se o excedente do papel sob a sala do metal que ficou a descoberto. Uma outra máquina faz o rebanho sobrando para dentro a arista da base da camisa.

Disco de ferro. O disco é de ferro envernizado tendo no centro um orificio escariado.
O disco limita a entrada do cartucho na camara e serve de zogua ao extrator.

** Fundo exterior e fundo interior.** São duas cápsulas de latae feitas á máquina, sendo o exterior espessa e rija e a interior mais alta, menos espessa e recisada.

** Contra cápsula.** É fabricada analógicamente aos fundos.

Sobre o disco de ferro assenta o fundo exterior; dentro deste está o fundo interior e dentro ainda deste a camisa do cartucho, tendo junto ao rebordo um tacho de espelho comprimido. A ligação das diferentes partes da cápsula do cartucho se faz por intermédio de contra cápsula que, entrando pelo orifício do disco de ferro, atravessa o fundo exterior e interior e penetra no canal que existe no tacho de espelho. Sobre o disco de ferro fica apoiada a contra cápsula por uma aba circular. A contra cápsula tem no fundo um pequeno orifício por onde se comunica a inflamação à carga.

** Escovas.** A escova é formada por uma pequena cápsula de cobre carregada com misto fulminante e por uma peça chato de lata chamada bigorna que aloja no interior da cápsula.

O misto fulminante tem a composição seguinte:

- Fulminato de mercurio 0,0637
- Clorato de potassa 0,0637
- Sulfeto de antimonio 0,0425

A cápsula fica metida dentro da contra cápsula com o fundo voltado para a parte inferior do cartucho.

** Carga.** A carga tem 4/5 de pólvora FN. Sobre a carga assenta uma pequena porção de algodão em rama que a separa da bala.

** Bala.** A bala é de chumbo comprimido, tendo a forma cilindro-ógival, com três caneluras na parte cilíndrica.

No interior da parte ógival há uma cavidade cilíndrica que está tapada: na base há uma outra de forma troncocónica ocupando toda a altura da parte cilíndrica. Esta última cavidade é fechada por um tacho de argila. A bala pesa 3/5 e fica ligada à camisa da cartucho por um estrangulamento desta na parte correspondente à primeira canelura contendo o base.

A cápsula e a bigorna só se colocam depois de posta a bala; as junções das cápsulas são unidas com uma dissolução de cera em água raz.

Os cartuchos metálicos são verificados durante o fabrico por meio de escanç-
Vão especiais, que marcam os limites em que se devem achar contidas os dimen-
soes das suas diferentes partes. O comprimento do cartucho embalado deve estar
compreendido entre 51,45 e 52,70

Acondicionamento. O acondicionamento dos cartuchos faz-se em cumhetes, devendo
cada um conter mil cartuchos em maços de 10.

Dimensões dos cumhetes.

Comprimento interior	0,630
Altura	0,160
Largura	0,170

Os cartuchos para serem transportados nos carros de munições, que acompanham
os corpos d’infanteria e cavalaria, são acondicionados em cumhetes especiais, mode-
lo 1873, feitos de madeira de cedro, contendo cada um 760 cartuchos.

O cumhete N° 1873 tem as dimensões seguintes:

Comprimento	0,52
Altura	0,21
Largura	0,17

São como dissemos de cedro e, interiormente, farrados de goia de Flandres que se
solda depois de enluce o cumhete. O tampa do cumhete é de corredição segura por
meio de parafusos. Em cada um dos topos há uma alça de corda para a condução
da braçagem. Nas duas faces existem duas alças de couro por onde podem passar
os granadeiros, que se empregam quando o cumhete se transporta às costas.

O cumhete é cintado, porcioso das extremidades, por duas braçadeiras de ferro
estanhado, fixas por parafusos.

Cartuchos para metralhadoras

Nas metralhadoras do sistema Cristofle-Montigny, que possuímos, em-
forece-se o cartucho Fusnot, e o Boxer, carregados um e outro com 3ª de pol-
vera FN.

O cartucho Fusnot difere do Boxer em ter o involucro, o fundo e a contra-
capsula formados d’uma só peça.
Capítulo 8º
Artifícios de guerra para comunicação de fogo.

I.
Munrão, estopim e vela mista.

Munrão. Empregue-se na confeção do munrão uma corda de linho de 3 cordas, coçada a 1/3 ou 1/4, de diâmetro uniforme, 15 mm aproximadamente.

Método de preparar o munrão. Numa caldeira introduz-se uma certa quantidade de água de ribeira, 100° por exemplo, e 5° de acetato de chumbo, logo que o líquido entra em elevação introduz-se lá dentro a corda e ali se conserva por espaço de 10 minutos. Durante este tempo meche-se o conteúdo da caldeira com uma espatula de pau. Tira-se depois a corda, deixa-se n’uma elha e, logo que tenha arrefecido um pouco, espreme-se sobre a caldeira. Como a corda está em meio da água é fácil fazer esta operação empregando dois serradouros de madeira. Um operário sustenta o serradouro onde a corda está enfiada e o outro introduzindo igualmente outro serradouro nel que forma a meia, torce-a para que este largue todo o excesso de líquido. Depois de espremida desmancha-se a meia e prende-se uma das extremidades da corda n’um sarilho onde se enrola, a medida que dois operários a vão passando com serração de gelo. S’uma extremidade a outra, para que fique com a mesma dureza e mesma tensão, e 14 mm aproximadamente de diâmetro. Tira-se de sarilho e põe-se a enxugar, e depois de enxugado forma-se de novo a meia, mantendo-a por algumas voltas de fio de vela.

São necessários 25° de água e 1,25° de acetato de chumbo para preparar 100° de munrão. O munrão assim preparado arde com uma velocidade de combustão de 16 centímetros por hora.

Pode fazer-se um bom munrão tratando pelo acetato de chumbo um munrão usado ou cordas velhas depois de bem batidas.

O oxigênio de chumbo, base do acetato, cede com grande facilidade o seu oxigênio para alimentar a combustão e por isso se justifica o seu emprego.
153

A Prússia preparava-se o murrão seco em digestão, por alguns dias 50° de corda de linho, bem lavado e purificado, num dissolução de 1,8° de chromato de jotasso em 14,2° de água.

Preparação pela lezuvia. Podia também preparar-se o murrão metendo a corda num uma caldeira com água pura onde se deixava mergulhado por espaço de 12 horas; despeja-se depois a água e substituindo-se por uma lezuvia, previamente preparada com 3% de cal viva e uma quantidade de cinzas igual em peso a metade do peso da corda.

Cobre-se a corda com cinza e deita-se-lhe por cima a lezuvia têxida juntamente com o resíduo da cinza. Passado algum tempo tira-se a lezuvia, aquece-se e se novo se deita na caldeira e assim sucessivamente por espaço de 12 horas até que se vá o fim da operação, a lezuvia emprega-se já em edulcoração. Tem-se que se deita lezuvia na caldeira por cima e a tampa. Dois dias se tivera para a operação, retirar-se a corda, esfremar-se, lavar-se em água quente por espaço de 5 minutos, esfremar-se novamente, depois ultimase a operação como já se disse. O murrão assim preparado assume na razão de 13 centímetros por hora.

Estojins. Os estojins são fabricados com 5, 4 ou 6 gíos de algodão imbibidos em álcool gomado e cobertos de uma composição jorgeria para conservar o gás.

Modo de preparar o estojin. Depois de terceir os gíos de algodão deixam-se imbibir num uma dissolução de goma arabica em álcool. Em seguida jaz-se a pasta de:

- 1/4 gíos de gomma
- 1/2 álcool gomado

Prepara-se o álcool gomado dissolvendo aproximadamente 15 gíos de gomma em 1/4° de água e juntando-lhe depois o álcool até prensar um litro.

Dispõe-se no fundo de uma caldeira uma camada de 1 centímetro de espessura de gomma, reduzida a pasta, sobre esta jorra-se uma outra camada de gíos de algodão já imbibido, de modo que esta atinja a altura de 6 gíos, sobre esta déj-se nova camada de gomma e assim sucessivamente, até que termine por uma camada de pasta tomada mais espessa pela adição de gomma. Os gíos de algodão ficam em contato com a pasta durante 6 ou 8 horas, depois eunem-se sobre um tambor onde um escoarão, servindo-se do uma gomera-lhe o jorgeria com solda.
Segue-se o ensugo que se faz ao ar livre e Sua Êia conforme a estação.
Ao ar livre costuma ser feita na razão de 65 por segundo.
Em França os gizos seco e embebidos em álcool ganhamem estar em contacto com a pastas por espaço de 3 ou 4 horas; tiram-se e mergulham-se de novo por camadas alternadas de misto e giz.

Introduz-se em seguida a ponta do giz no bico do gumil à Fig. 53, e depois no tubo B movel que fica superiormente, endereçando então o gumil de pastas e envolta-se o estojim no quebra Fig. 54, sustentado por dois serventos que lhe dão movimento a rotação. O operário deve conservar o gumil sem pre cheio de pasta e inclinar o tubo movel para o lado do quadro. Um operário com uma gacheira polvilha com polverim o giz à medida que ele vaza sendo enrolado.

Na Alemanha o estojim depois de seco mergulhase de novo na pasta, e calibrado, o que se consegue fazendo o passar por um orificio de certo diâmetro; e polve- lhamo tão regularmente quanto possível, e vae outra vez a enxugar.

O estojim serve para escavar a maior parte dos artifícios da guerra e arde mais rapidamente quando encerrado em tubo de papel. Se que ao ar livre.

As condições de fabrico e a velocidade de combustão do estojim acham-se reunidas no quadro seguinte:

<table>
<thead>
<tr>
<th></th>
<th>Estojim</th>
<th>Quantidade de matérias necessárias por fabricar 100 de estojim.</th>
<th>Tempo que basta a combustão de 1 estojim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colchão</td>
<td>6,2</td>
<td>2,94, 4,35, 24,2, 24,2, 13, 13</td>
<td></td>
</tr>
<tr>
<td>França</td>
<td>2,2</td>
<td>6,80, 4,6, 9, 0,835, 13</td>
<td></td>
</tr>
</tbody>
</table>

Um bom estojim deve apresentar em toda a sua extensão a mesma resistência, não ter nós, inflamar-se com facilidade e jorrear regularmente a sua inflamação d'uma extremidade à outra.

Vela mista ou de composição. A vela mista é formada d'um tubo de,
joapal cartucho inglês, fechado nas suas extremidades e carregado com um misto de combustão lenta e intensa. Tem várias aplicações e usos, principalmente, nas feridas, para dar soco às peças quando se empregam escopas de inflamação.

Modo de preparar a vela-mistura. Procede-se à confecção da vela-mistura em punhando um rolador cilíndrico onde se enrola um retângulo de paal cartucho colado nas voltas.

Dimensões:

- Diâmetro do rolador cilíndrico: 0,013
- Lado maior do retângulo de paal: 0,400
- Lado menor do retângulo de paal: 0,360

Com estas dimensões o retângulo dá sete voltas completas em torno do rolador, o que basta para que o cartucho tenha a necessária consistência. O tubo ou cartucho sobe às suas extremidades sobre o toço do rolador e depois de secado, introduz-se dentro de uma forma de bronze, Fig. 55. A forma é composta de duas partes iguais assentes sobre uma base e mantidas por anéis de mesmo metal. O cartucho ajusta-se perfeitamente no vaso interior formado pela reunião das suas peças. Introduz-se então um caldeirão para espantar melhor a sobra do fundo do cartucho e em seguida, prepara-se o massíco. O massíco é formado por uma porção de argila que se introduz na base do cartucho e se empina até uma altura de 50 a 60. Em seguida, procede-se à introdução do misto.

O misto é composto de:

- Salitre: 7 partes
- Estofado: 3 partes
- Solutum 1 parte

Depois de reduzidos a pó muito fino os três componentes e de os ter passado a peneira de seda, mis...
turam-se intimamente e para tornar mais perfeita a mistura passam-se de novo duas ou três vezes à gradeira.

Carregamento. O misto introduz-se por camadas sucessivas, por meio de um espécie de cochara (Fig. 56) de modo que de cada vez se emprega uma certa quantidade de misto. A cochara é uma mecha de madeira, a munida de um cabo de madeira. Na sua técnica empregam-se cocharas de diferentes dimensões conforme a natureza do artifício que se pretende.

Introduzida a primeira cochara de misto aplica-se por meio de um calcador um certo número de camadas, empregando para isso um mastro de madeira, e apoiando-se de cada vez a mesma força. Calcada a primeira, porção de misto introduz-se nova quantidade, que se calça de mesmo modo e assim sucessivamente até chegar completamente o cartucho.

Final end this operation, escorva-se a vela com duas pontas de estojim cruzadas, segurando com ponta de poloverin, ficando as extremidades livres.

Encoifamento. O encoifamento é feito com uma roseta de papel cartucho grandioso, com quatro guias por onde passam as pontas livres dos estojins. As guias da roseta são esfregadas sobre o corpo do cartucho e cercadas de uma tira de papel colada.

A vela mista dura 10 a 11', projetando uma chama viva e clara.

II.

Escorvas

Chamam-se escorvas os artifícios empregados para comunicar a inflamação às cargas das bocas de fogo.

Differentes sistemas de escorvas. As escorvas segundo o modo porque se inflamam, podem dividir-se em quatro classes:

1.ª - Escorvas de inflamação;
2.ª - Escorvas de percussão;
3.ª - Escorvas de gás;
4.ª - Escorvas elétricas.

Escorvas de inflamação. A primitiva e mais simples escorva de inflam-
maçã é o estojo. Esta escorva consta dum pequeno tubo de poaço no interior do qual se aloja um pedaço de estojo, que deve exceder um centímetro às extremidades do tubo. O comprimento do tubo de poaço varia com o calibre das bocas de jogo.

Para as peças de calibre 7 a 9 o tubo de poaço tem 127 de comprimento. Para as de 10 a 11, 156; para as de 13 a 15, 173 e finalmente para as de 17° 216.

Empregavam-se estas escorvas nas bocas de jogo de armas-liso e principalmente nos morteiros.

Escorvas de poaço vasadas. Esta escorva, Fig. 57, é formada dum tubo de poaço tendo n uma das extremidades um calixe de poaço. O tubo é fabricado enrolando um retângulo de poaço em um rolo de ecolando.

O tubo formado de poaço almossado, tem 33 de comprimento. O calixe e uma calotte esférica de poaço, primeiro vasada em rosetas, depois curvada em um molde que lhe inforne a forma conveniente. O calixe coloca-se ao tubo por meio de arestas ou ganhas abertas na extremidade deste.

Para carregar estas escorvas introduz-se o tubo de poaço na forma metálica e com um calcedor conjugue-se o mixto composto de:

- **Salitre** 4
- **Polverim** 4
- **Ensopre** 2

O mixto é atravessado por um pequeno canal na direcção do eixo, Fig. 58, que o esquicho da gua ali reserva. O calcedores são vasados para vestem no esquicho. O sistema de carregamento é análogo ao da vela mista.

Para preservar a humidade costumam envolves-as em encolhidas envolvendo-as n um retângulo de poaço. Algumas vezes o esquichage limita-se ao calixe, tapando-se a extremidade oposta do tubo com o preparado seguinte:

- **Cera amarela**
- **Per negre**
- **Sebo**

Os escorvas de inflammável são de facil fabrico; o seu emprego, porém, não é eficaz, se devido se chuvassas e a sua maior desvantagem é denunciarem ao inimigo a posição das bocas de jogo e o momento de fazer-se o tiro, porque para inflammáveis é
necessário fazer uso do murro ou da vela mista.

Escora de percussão. Esta escora representa um progresso, porque para in-
flamá-la não carece de murro ou vela mista. A primeira escora de percussão
que se empregava consistia num estágio Fig. 59, terminado por
um gênio, resguardado dentro de um tubo de papel envermesado. O gên-
nio que se empregava era o gênio de mergulho ou então um compor-
to de:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorato de potassa</td>
<td>45</td>
</tr>
<tr>
<td>Sulfureto de antimonio</td>
<td>45</td>
</tr>
<tr>
<td>Polvora</td>
<td>8</td>
</tr>
<tr>
<td>Exsufre</td>
<td>2</td>
</tr>
</tbody>
</table>

Adotou-se depois a forma da escora de papel vasoado carregando o canal
com a composição seguinte:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salitre</td>
<td>3</td>
</tr>
<tr>
<td>Antimonio</td>
<td>3</td>
</tr>
<tr>
<td>Carvão</td>
<td>1</td>
</tr>
<tr>
<td>Exsufre</td>
<td>1</td>
</tr>
<tr>
<td>Polvora</td>
<td>1</td>
</tr>
</tbody>
</table>

Álcool gomado quanto baste para formar pasta consistente. O calix era carrega-
do com o gênio.

Como a estátua escora lá estava sobre a cabeça, sem momento do choque,
dem que a inflamação se comunicasse ao canal, modificaram nas ainda dando
lhes as formas representadas nas Fig. 60 e 61. O grande defei-
to destas escoras era que não muito que a escora não ser o choque
assaz forte e em cheio, que o choque não ser fácil aplicar a jarra
assim, fazeria a escora consistente sobre o gênio.

2. Prussia. Foi uma importante modificação nas-
tas escoras. O canal era carregado com polvora sal-
ada e a cabeça era escorada com acido sulfúrico
concentrado, hermeticamente fechado e uma lagrina
se vidro colocada sobre polvora de chlorato de potas-
sa, Fig. 62.

Um leve choque sobre a cabeça da escora salta o acido sulfúrico
Fig. 62 que, em contacto com a polvora de chlorato, ajoelha-se da potassa e
Seiva livre o ácido clorídrico que cede imediatamente o seu oxigênio à matéria combustível.

Apesar, porém, de o resguardar: d'um cilindro de madeira envolvido o vidro, a escorva era muito sensível e fácil de inflamar-se por qualquer compressão que quebrasse a lagrime do vidro.

Escorvas de griegão. Estas escorvas são actualmente as adoptadas pela artilharia, porque, mais do que qualquer outra, asseguram a eficácia da inflamação.

A escorva de griegão compõe-se:

1º. D'um tubo exterior de cobre roseta embutido, de 4,5 mil de comprimento e 3,3 mil de diâmetro exterior, terminado superiormente por quatro orelhas rebatidas a angulo recto, fíg. 63, formando a cabeça; no interior deste tubo, e man
tido por um estrangulamento, existe um pequeno tacho de madeira,
gurado na direção do eixo.

2º. D'um tubo interior de mesmo metal de 4,6 mil de comprimen
to e 4,1 mil de diâmetro exterior, carregado até 12 da sua altura com
a seguinte composição fulminante:

Calorato de potássio 1/3
Sulfeto de antimonio 1/3
Alcool gomizado 1/4

O alcool gomizado grespeia-se dissolvido 440 gramas de goma
arábica n'um litro d'alcool.

3º. D'um gírecto, d'arame de cobre, de 12,3 mil de comprimento,
tendo uma das extremidades achatada e dentada na extensão
mil de 1, terminando em goma de gancho.

Depois de carregado o tubo interior, introduz-se em um canal reservado na
massa do mixto a extremidade Lisa do gírecto e gurcha-se até que o gancho fique
retido pela garede do tubo; em seguida a mesma extremidade de gírecto
no origem do tacho de madeira, fixa no tubo exterior; gurcha-se novamente até
que se estabeleça o contacto entre o tacho de madeira e a base do tubo carregado.

Os franceses collocam uma rosette de caoutchouc ligeiramente vulcanizada
mil de 0,4 de espessura, entre o tacho e o tubo destinado a fazer a obturação. A extre-
média de talvez o arame torece-se formando uma arela e sobre-se para o exteri-
or como se vê na figura.

O tubo exterior é cheio de pólvora gina e tampado inferiormente com uma mistura de 9 partes de cera branca e 1 de joquente. Completa-se a escorova vertendo uma gota de cera na face superior do teto de madeira.

A escorova obturadora, sistema Krause. A escorova obturadora, de grieção, sistema Krause, fig. 54, tem por fim evitar os inconvenientes que representavam as escorvas de grieção ordinárias, quando empregadas nas peças de grosso calibre. A escorva, que deve garantir a inflamação segura e commoda da carga, obturando completamente o canal do suíno, compõe-se das peças seguintes:

A - suíno de latão onde se aloja as outras peças do artifício.
B - grieção de cobre, cuja forma se ve perfeita representada na figura.
C - composto fulminante, acondicionado em tubo de joquel.

D - cascula de cobre com fulminato.

Antes de empregar a escorova lubrificava-se a parte rosada e a base da cabeça com uma mistura de uma parte de cera e duas de sebo.

A escorva é obtida por jundição e sofrega trabalhio de torna para abrir as rosca e o canal. O tubo de joquel contendo o fulminante envolve o arame do grieção e fica ali seguro.

Coloca-se o grieção no seu logar, gaiça-se a aleta na extremidade do arame e in- troduz-se a cascula A no seu respectivo logar e verte-se lhe uma gota de verniz em cima do grieção para evitar a entrada da humidade. No virar da cabeça da escorova se tate-se uma gota de cera para o mesmo gaiça.

Modo de usar da escorova. Para fazer grieção rosca-se a escorva com auxilio de uma chave na parte posterior do canal do suíno da peça que se achou dispositivo para este fim, gaiça-se o grieção e a inflamação transmite-se à carga da boca de grieção. Quando a grieção for passada pelo canal do suíno, porque este gaiça obturado pela grieção, este grieção que se ajusta completam-se em G. O rosca da escorova, antes de aplicá-la, é lubrificada com o conduto acima descrito.
Escorvas elétricas. As escorvas elétricas funcionam pela eletricidade de que se
empregam as pólas, quer as correntes de indução. Chamam-se escorvas galvâni-
cas ou de G de platina as que se inflamam por correntes de pólas, escor-
vias de tensão as que funcionam pelas correntes de indução, podendo também
ser inflamadas por qualquer bateria elétrica. Como exemplo das primeiras
um a escorva dos parques, e das segundas a escorva Abel.

Escorva dos parques. A escorva elétrica dos parques de engenharia, fig. 65,
conseja-se essencialmente de uma pequena helice de G de platina, de
1 centímetro de diâmetro, cercada de algodão-pólvora e introdu-
ida numa cápsula gelatinante. Quando as duas extremidades
da helice se acham, por meio dos condutores, em comunicação com
os pólas da póla, o G de platina torna-se incandescente, inflama
o algodão-pólvora e faz estourar o gelatinante. A helice é soldada
nas suas extremidades a dois fios condutores, mantidos numa
posição invariável, um em relação ao outro, por meio de uma pe-
ça de madeira. O algodão-pólvora, cercando a helice, é emer-
in num pequeno tubo de cartão, que se fixa a peça de madeira e ge-
metria dentro da cápsula gelatinante.

Para preservar as escorvas da humidade reveste-se toda a peça de
madeira e a junta de uniao com o conduto de Chatterton, composto de
Gutta-percha, alcatrão e resina.

Fabrico do corpo da escorva. O núcleo ou corpo da escorva, de madeira de sal-
gueiro ou ameixeiro, é feito ao torno e tem um canal longitudinal, passando pelo
eixo e outras dois laterais comunicando obliquamente com o primeiro.

Os condutores são de arame de cobre recubiço de

Legenda

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
tar de novo no canal longitudinal (N. 2)
de que tomam a posição indicada no (N. 3).

Loga que a operação se for para os 2 glos
conductores separa-se um do outro por meio
um pequeno taco de madeira de 0,7 de diâ-
metro que se introduz no canal longitudinal
e se coloca de frente ao núcleo. As extre-
midades dos glos de cobre que saem do canal longitudinal cortam-se a 0,04. Se
Distância da abertura deste, achatam-se com o martelo. Escamam-se com o choro
de zinco e estanham-se em solda derretida. Os glos que saem dos canais lateraes
abatem-se paralelamente ao eixo como se vê na fig. (N. 4). Estes são assim que os
esforços de tração exercidos sobre os glos se transmitem à hélice de jolatina.

Fabrico e colocação da hélice de jolatina. O glos de jolatina enrola-se em hie-
líce de modo que forme oito espirais de 0,2 de diâmetro, unidas mas sem que se to-
quem. A operação pode fazer-se á mão enrolando o glos sobre um mold de di-
mensões convenientes, mas é preferível o enrolo 8 numa máquina especial por
que dá hélices mais regulares. A hélice de jolatina é então soldada na extremi-
da de dois condutores de cobre que se mantêm n'um afixamento de 0,03.

Para este fim enrolo-se também um aço endurecido especial que mantém a hélice
sobre os condutores e permite regular o afixamento das espirais.

Colocação do tubo de jaspel. Fabriquam-se os tubos enrolando tros de jaspel,
que se encolhem n'un roldão de 0,04 de diâmetro. Quando os tubos estão rees tuem-
se em troços de 0,15 de comprimento e abrem-les, com um rolo e tendo, a 0,06
uma das extremidades dois juros circulares de 0,03 de diâmetro, em face um do outro.

Os tubos assim preparados são colados ao corpo da espessa de forma que pelos ju-
ros se possa observar a hélice. Faz-se em seguida passar a corrente 8 num elemen-
to da jilha de Dunsen, que deve levar ao rolo sombrio a hélice de jolatina. Esta
operação tem por fim verificar a soldadura e destinar as matérias estranhos que
podem-se adheir à hélice. A colagem jolatina, depois de bem carapeado e legira-
mente imergoimado d'uma mistura de 2 partes de cimento a vertexe vermelho de potassio

Fig. 66
e de clorato de potassa, juntamente pulverizada, e colocado dentro do tubo em contacto com o giro de platina. Verifica-se com a lupa, olhando pelos foros se o algodão envolve bem o giro, e corta-se com a tesoura o excesso do tubo acima do algodão e fecha-se com uma rodelinha de papel colada.

A escorva assim preparada deve ter uma resistência compreendida entre 550 e 750 metros. Regulam-se as que não satisfazem a esta condição.

Fabrica e colocação da cápsula fulminante. A cápsula fulminante Fig. 67 é de cobre, embutida, tendo 0,036 de diâmetro e 0,045 de comprimento. Carrega-se com 1,5 de fulminato de mercúrio. A carga é mantida por um pequeno chapeu ou disco de latão que têm no centro um orifício de 0,036 de diâmetro. Esta disposição torna por isso aumentar a explosão. Uma gota de verniz, lavando o orifício do chapeu garante o fulminante da humidade. A cápsula é exteriormente juntada de preto na parte relativa à carga. A cápsula coloca-se sobre o núcleo de madeira introduzindo-se até que o resalto junto aos canais laterais, fique em contacto com a base do tubo. Guarnecê-se depois a junta e o corpo da escorva com uma camada espessa do enduto de Chatterton, amolecido a banho maria. Para evitar que qualquer os- tão fenda o enduto, mantêm-se os gios conductores no ponto da saída por uma ligadura. Seja de giro de vela. Deve atender-se a que não fiquem tocando-se.

Para se aplicar o enduto introduzir-se a escorva dentro de uma gômera representada na Fig. 68. Terminada a escorva procede-se a uma última verificação de resistência.

Como esta escorva é um fabrico complicado, substituir-se muitas vezes por outra de maior simplicidade (Fig. 69). Para fabricar a gômera se ao meio um bocado de arame de sobre 0,001 de diâmetro e 0,200 de comprimento, revestido de uma camada de guta percha; toca-se e liga-se a 0,050 das extremidades livres, tendo o cuidado de aplicar um bocado de têla nos pontos onde deve gasear-se a ligadura; corta-se a dobra do arame a 0,003 ou 0,010 da sua extremidade, despoja-se o enduto.
exclusivo e decapam-se os dois aroxixes na uma extensão de 0,005 e soldam-se
lhe a helice de jolotina. Come-da-se com algodão-pólvora a helice e os dois
extremos de ambos dos condutores e introduzem-se na uma capsula com
polimento, exercendo um movimento de rotação no sentido dos dedos dos
fios. A jolotina se desloca numa camada do conduto de Chatterton para evi-
tar que a humidade penetre na capsula. As duas extremidades dos con-
dutores ficam demolidas na uma extensão de 0,05 a 0,04. Durante o
Gabrie fazem-se as verificações seguintes:
1º. Depois de ter cortado o aroame e antes de soldar a helice de jolotí-
na, é necessário observar por meio da gôlilha e do galvânômetro que não haja con-
tato metálico entre os condutores;
2º. Soldada a helice, deve levantar o rubro por meio de um elemento de gôlilha, para
verificar a boa execução da operação, e volatilizar algum acido chlor-hidrico que
disponha em resultado da jolotina da solda;
3º. Ulterior a escova verifica-se a eletricidade.

Determninação da resistência da escova. Emprega-se para este fim a ba-
lança elétrica de medir resistências (Fig. 70 e 71) a gôlilha de ensaio (Fig. 72) e um ga-
ßvanômetro.
A gôlilha de ensaio consta essencialmente de um el-
ho de madeira em volta do qual se acham envolto-
idos, em helices paralelas,
umio de xinco um e um
fio de cobre coberto de algodão.
O polo positivo é constituído
do polio fio de cobre e o nega-
tivo polo de xinco. Para joliar
a gôlilha em actividade, mergulha-se n um vaso contendo agua salgada, e deve se
joliar-se dois ou três minutos antes de fazer as observações, para que o algodão
que isola os fios tenha tempo de se impregnar d'agua.
A balança, consta de um quadro de madeira, onde existe uma escala gradu-
da e um giro de folatina, teso entre dois pressores. Este aparelho junta-se no
princípio, conhecido em Physica pelo nome de, ponte de Wheatstone.
Disposto o instrumento e feitas as ligações jor-meis de condutores de sobre, entre o
pilha e o galvanômetro como se vê na fig. 7, fechara o circuito colocado à mão
o giro conductor livre sobre o giro de folatina; a agulha do galvanômetro sa um des
vio e continua a percorrer com o extremo livre do condutor o giro de folatina até que
galvanômetro volte ao zero. O eígra da graduação em frente da qual se achu
em a extremidade do condutor, multiplicada por 100 dá a resistência da escar
na. Quando se procede a esta operação, é necessário orientar o galvanômetro,
isto é colocado de modo que quando não é atravessado pela corrente, o índice es-
ta no zero da graduação. (1)

(1) Teoria da balança. A ponte de Wheatstone consiste no seguinte: Seja f,
a pilha, g e galvanômetro, a, b, c e d quatro condutores de
resistências iguais, isto é, seja a resistência de a, c
equal à que oferece b, d; ou seja a: b: c: d. Se esta-
belecermos a ligação destes condutores com a pilha f,
em e e, a corrente chegando ao ponto e bifurca-se e segue
por a e c e b, d; até e, onde se fecha o circuito.
Se, porém, em b introduzirmos uma resistência a corrente não se bifur-
ca e atravessando o galvanômetro, a agulha marcará um desvio. Se voltar
o condutor b, d e estabelecer a ligação n um ponto sobre e d de modo que
saia a: b: c: d o galvanômetro volta ao zero. Este princípio está realiza-
do na balança. O condutor em linha pontuada a é constante e suponha-
mos que tem uma resistência igual a 0 hm, 6 escorva cuja resistên-
cia R pretendemos conhecer, e D é representada na balança pelo giro bu-
do de platina; logo quando a extremidade livre do condutor toca no giro de
platina o galvanômetro acusa um desvio, mas porcorrendo com o condutor até eui-
librar a resistência da escorva, isto é até que seja a: b: c: d temos pela indicação da
escala o valor de R que pretendemos conhecer.
Escorva de tensão. A escorva de Abel é de todas as escorvas de tensão a que
melhor satisfação. Compos-se de duas partes. A cabeça de madeira A e o canal B.
A cabeça em forma de pera, é de made a e tem três furos, um vertical no sentido do
eixo, e os outros dois horizontais e paralelos um ao outro. Um furo central alberga
um tubo de cobre, contendo os dois condutores isolados, cujas extremidades fes
joinas de guta-percha, mergulham no gelatinante. Fig. 73.
As extremidades livres contam-se a um comprimento de 0.03 e adotam-se
e umas ranhuras que existem na cabeça da escorva, ficando introduzidas
nos furos horizontais, onde se prendem por meio de dois tubos de cobre que
as formam contra a madeira. O canal B tem um tubo de madeira cheio de pol
verom e adotado a extremidade da cabeça da escorva de modo que o
tubo do gelatinante mergulhe no canal.
Uso fabr a destas escorvas deve haver todo o cuidado em que fique estabelecido um per
feito contacto entre os fios e o gelatinante. Os tubos de cobre que vestem nos furos
horizontais servem para ligar a escorva com os fios de gerador eletrico. Para isso
os condutores que vem do gerador juncam-se a estes tubos por carvulas de cobre que
n'elhes entram justos.

Muitos outros tipos de escorvas de tensão, se encontram, mas todos eles guardam no
mesmo principio. Por exemplo a escorva representada na Fig. 74 onde
o canal e a cabeça estão reunidos na mesma peça de madeira.

Enxregam-se no carregamento destas escorvas e - capsule de gelatinante.

Diferentes composições gelatinantes entre as quais citaremos as mais importantes:

1ª. Protocálcico de cobre... 14
Chlorato de potassa........ 22
2ª. Protosulfuro de cobre... 64
Chlorato de potassa........ 22

(Protófosfato de cobre... 14
Chlorato de potassa........ 24
3ª. Protosulfuro de cobre... 60
Protófosfato amorphe.... 5
Phosphato amorphe.... 10

Fig. 74.

Legenda:
A - fios de cobre.
B - cilindro de madeira.
C - carga de polvera.
D - Toco de conduto.
Capítulo 9.
Artifícios de sinais, artifícios de esclarecer, artifícios incendiários, composições asfixiantes.

I.

Artifícios de sinais.

Antigamente empregavam-se fogos fixos para sinais, produzidos pela combus-
tão de substâncias orgânicas. A luz desses vivos e soberanos eram, às vezes, obscura-
cida pelo gume.

Quando o sinal tiver de ser produzido pela iluminação e preferível empregar
um barril aberto por um dos lados e cheio da composição seguinte:

Salitre 6 partes
Enxofre 3 "
Bolverim 1 "

A luz produzida por esta composição é muito viva, muito clara e de fácil pre-
paração, mas como todos os artifícios deste gênero têm o grave inconveniente de
não poder ser vista senão a curtas distâncias por causa da pequena eleva-
ção do fogo luminoso.

Os artifícios aereos, como por exemplo os foguetes, elevando-se a grande altura,
avistam-se de muito longe, tendo por isso grande superioridade sobre os fogos fixos.

Entre nós fabricam-se os facho de sinais, para uso de bordo e os foguetes
de sinais que podem ter aplicação em campanha.

Facho de sinais

Temos dois modelos, o Mt. 1. nr. 1871 e Mt. 2. nr. 1872, diferindo apenas nas dimensões.

Facho de sinais Nr. 1. As fases do fabrico deste artifício são as seguintes:

1.ª - Confeção do tubo.
2.ª - Carregamento.
3.ª - Escarvalhamento.
4.ª - Montagem e acabamento.
5.ª - Confeção do tubo. Cercam-se de papel inglês retângulos de 4/3 de compr.
mente por 0,19 de largura; deixa massa em toda a superfície. Desta e envolvam-se
uns por cima dos outros em torno de um rolo de 0,09 de diâmetro até o tubo assim for-
mado ter 2 mm de espessura. O centro do rolo há uma depressão onde por meio
de um giro de merlim se far um estrangulamento em quanto o tubo está humo.
Depois deixa-se seco à sombra ou em estufa e logo que estiver seco desatase
o giro de merlim e com uma serra cortase o tubo em dois pelo estrangulamento
como se vê na Fig. 75.
Introduz-se pela extremidade
aberta a uma forma de madeira
rija, que se fixa verticalmente sobre um cípso e com um vasadeir 0,09 de di-
ametro, corta-se o toço estrangulado. Feita esta operação a todos os tubos ficam
preparados para o carregamento.
2º Carregamento. Para carregar os ganchos emprega-se a composição seguinte:
Saliúr 24
Enxofre 4 partes em peso
Salitre 1
Sulfeto de Antimonio 2
Cada um dos componentes é reduzido préviamente a pó; misturam-se depois e
passam-se duas vezes sucessivas pelo forno de erina. Preparado o misto in-
troduz-se o tubo na forma com o maior diâmetro voltado para cima e carregase
ao modo ordinario. Cada escharra de composição é calada com dois panadas
de suco. O carregamento termina quando a composição tem 0,1 de altura.
3º Escorvamento. Logo que esteja completamente seco, pelo orificio aberto
com o vasadeiro tirase com um escarregador uma porção de misto tal que permita
introduzir-se no rebaixo uma bigorna de bronze. Fig. 76, formada
por uma base de três braços ao centro de qual se levanta vertical
mente uma haste com três Faces emolduradas
Depois de assente a bigorna sobre o misto coloca-se na haste verti-
cal uma cápsula galvanizante. Corta-se de isqueiro de algodão uma
uma rodelha de 0,04 de diâmetro, abre-se na central uma abertura circular de
0,007, faze-lhe gumma e tija-se com elle o toço do gacho passando pela abertu-
ra do centro o corpo da cápsula.
1. Montagem e acabamento. Começar-se-ão os fios de cabo de madeira, de seção redonda, de 0,19 de diâmetro, e vazado, de linha de 0,05 de largura, em toda a superfície, e em rolhas em torno de um rolo de 0,034 de diâmetro, até que o tubo assim formado tenha 3 de espessura.

Tire-se então da forma, deixe-se secar e em seguida cortar-se-ão anéis de 3 de largura. Toma-se um destes anéis e se o entrelaça pelo vão interior e introduz-se pelo topo fechado do corpo do facho, Fig. 77 até 0,04 do mesmo topo, ligando-se com gíis de vela até que fique perfeitamente aderente, depois tire-se o gíis.

Pelo extremo aberto do tubo introduz-se um cabo de madeira de casquinho que se fixa com gíis de vela ou gude. Sobre a parte comprimida entre o anel e a extremidade do tubo, de lado do cabo, coloca-se um rolho indicando o nome do artífice, a época em que foi manufacturado e o modo de usar o facho.

A parte superior e inferior do rolho e o anel cobrem-se com tiras de papel amarrado que se colam. A extremidade superior do facho acima do anel cobre-se com uma tira de papel branca de 0,032 de largura que se cola também. Uma caixa de papel de Flandres, Fig. 78, com tinta branca inglesa assenta folhas rebordadas à 4 sobre o anel e protege o facho do se inflamar accidentalmente.

Para inflamar o facho, tire-se a caixa e bata-se com a casca la rendimento sobre um corpo duro; logo que a casca é tomada coloca-se verticalmente o facho no próprio fim.

Facho de sinais no 2. Este artifício fabrica-se do mesmo modo que o no 1, com a diferença de ser o tubo de maior comprimento. Empregam-se retângulos de cabo de madeira das mesmas dimensões, o rolho tem o mesmo diâmetro e a espessura é 22.
veitando-se unicamente a escrosão a b do tubo.

Os fuziões de sinaes assum.

dicenam-se, em uns metes para objectos diversos, por camadas sucessivas separando-se por gazes de cartucho ordinario.

Foguetes de sinaes.

O foguete de sinaes consta d'un tubo ou cartucho carregado de papel; d'un exerçitil retransulado que contem as lagrimas, e duma canoa de direcção.

Os Jobaes do fabrico são:

1º. Confeção do tubo.
2º. Carregamento.
3º. Confeção do exerçitil.
4º. Montagem e acabamento.

1º. Confeção do tubo. (fig. 80). Corte-se-se do pa- pel cartucho inglés, rectangulos de 460 de comprimento por 160 de largura. Um dos rectangulos só recebe gomma na parte li- mitada pelos traços interrompidos, fig. 81, os outros recebem um toda a su-

perficie.

Assenta-se o rolador, fig. 82, sobre a doante livre de massa do primeiro rectangulo e enrolo-se esta girando as voltas bem apertadas, empregando-se para isso a garlopa fig. 83.

Estando enroblad o primeiro rectangulo enrolo-se o se gundo e assim sucessivamente ate que o tubo tenha 28

De diâmetro exterior. Emquanto este húmido jaz-se um es-

Trangulamento a 28 d'uma das extremidades, empregando

um gis de vela sobrado e segura-se com um nó de fogueiro. O rolador, para-
... poder retirar e depois de feita o estrangulamento têm a disposição representada na Fig. 83 e 84.

Os tubos depois de feitos seixam-se secar à sombra ou numa estufa. A extremidade do tubo do lado do estrangulamento denomina-se culatra e do lado oposto chama-se boca. Tanto do lado da boca como do lado da culatra cortam-se o tubo à serra bem perpendicularmente ao eixo, ficando um dos cortes a 20\(\text{m}^2\) do estrangulamento e o outro a 2\(\text{m}^2\) do plano da boca. Deve notar-se que nos primeiros rectângulos se limitam a azagolicação da gamma unicamente a uma parte da superfície; esta disposição tem por fim prevenir, quanto possível, a eliminação de carga pela humidade e por isso se deixam sem gamma as voltas que mais proximas se encontram do miolo.

2. Carregamento. O tubo depois de observado e se notar que não tem geadas e que está perfeitamente liso introduz-se numas gavetas de bronze colocadas sobre um prato com a comprovação, Fig. 85, e procede-se ao carregamento d'água, quando se não dispõe de máquinas para a confecção destes artifícios.

O misto empenhado de salitre, enxofre e carvão, em 3\(\text{m}^2\) e em grandeza, ou então de:

- Solvênio: \(\text{5}\)
- Salitre: \(\text{2, partes em peso}\)
- Carvão: \(\text{2}\)

O carvão em grau razé obtém-se passando ao crivo da polvereira E F o carvão depois de triturado por 10 minutos: separa-se assim o fe o e grau dos fragmentos maiores, e separa-se o fe por meio da gaveta de seda.

A proporção dos componentes não tem nada de absoluta. Se o foguete reben- ta ou desboca diminuem-se a quantidade do solvênio, se pelo contrario não têm suficiente arranço ou não sobe rapidamente aumentar-se.

Diz-se que o foguete desboca quando projeta o carga do caixilho antes de se...
ter combustado todo o misto do tubo e sem ter completado a sua ascensão.

Disposto o tubo na gôrma como indicamos, e preparado o misto introduzir-se
a primeira cocharra, primeiramente com o calcador e assim sucessivamente.

Em seguida se nesta operação dois calcadores, um jurado e outro massaço, se ini-

ciam uns ao lado, de um lado e outro massaço, se incri-
esse em um, enquanto a carga não atinge a extremidade superior da

gôrma, o outro serve para ultimar o carregamento.

Concluída a carga cobrem o massaço com um disco de cartão, e com metade das

voltas da seita correspondente ao tubo, que, para este fim depois de granjado se sobra.

Sobre estas voltas têm-se 6 ou 8 pocadas de maço em que se prepara o calcador mas-

saco. Faz-se a operação girar-se com um cravador três ou quatro vezes na

base superior do tubo, havendo o cuidado de atravessar completamente o dis-

co e as voltas do cartão, que faram sobradas, sem penetrarem na composição.

Em geral têm-se 12 pocadas por cada cocharra de misto, pesando o maço

3,5 e levantando-se sempre 1 acima do calcador. Ultimado o carregamento te-

rare o tubo da jorna se observa-se novamente e regata-se sempre que a sua

superfície exterior apresente qualquer irregularidade.

Em seguida escorvou-se o goguetê com póveres, as quais se ver apanhas hu-

medeje com água, encheí-se a eulatra, com o disco de cartão granjado de joazol

sob granjado, Fig. 36, disco de joazol que ficou em contacto com

a base da eulatra, coloca-se uma tira de joazol na de uma

gita de linha afin de com facilidade se poder desenhar o

goguetê e descobrir a escorva no momento de o seitar. A seita

granjada do disco sobrava sobre o tubo e colôse.

Para garantir a escorva e aumentar a grossura do tubo, envolva-se e colhe-se
uma tira de joazol.

Na Fig. 37 vê-se um

corte feito no goguetê. O vario

central de forma côncica bb, (o que se chama alma)

e a jorção c c, compreendida.
entre o extremo superior da alma e a boca denomina-se massaço.
O diâmetro e altura da alma, bem como a altura do massaço são proporções
não ao comprimento e espessura das paredes do tubo. Augmentando-se a altura
da massaço suportem-se o gozete com um peso que lhe prejudique o alcan-
ce: diminuindo-se engraçada-se o massaço e o gozete desboca. Augmentando
a alma aumenta-se também a superfície de inflamação da carga, augmen-
ta a quantidade dos gases e portanto a pressão contra as paredes do tubo e o
gozete rebenta; diminuindo-se, ocorre o contrário, mas o gozete perde a velo-
cidade e alcance.
Estas duas circunstâncias harmonizam-se de modo que não predominem
uma sobre a outra.
3. Confeção do casipetel. Corta-se um retângulo de gozete cartucho inglês
de 285, de comprimento por 100 de largura, de-á-se-lhe goma em toda a su-
face com exceção de uma tira de 140 de largura, medida no sentido do
comprimento. Enrolado o retângulo em volta de um rodado de 45 de diame-
tro, obtém-se assim o corpo do casipetel. A embu-ula tirase de um semicírculo
cujo se vê na fig. 88, de-se-lhe goma na superfí-
êcia marcada com traços interrompidos, assen-ta-se se
bre uma goma comica, e obtém-se assim a embu-
ula do casipetel. A embu-ula não se faz duma simples
gota de gozete cartucho, mas sim de três gotas em
jostadas. Para ligar o corpo do casipetel ao tubo, emprega-se um anel de
madeira ou cartão com 90 de diâmetro no vivo interior, 45 no exterior e 6 de
espessura, colocado próxima do fioanel da boca do tubo, onde é grudado. Sobre
esse anel veste-se o corpo do casipetel e gruda-se também na sua respectiva,
posição. Uma tira de gozete de 170 de comprimento, 75 de largura com gran-
ja de 10, coloca-se sobre o corpo sobrandas as granjaz sobre a face inferior do anel.
O casipetel carrega-se com gozos detonantes ou gozos de cores.
Gozos detonantes. É o que vulgarmente se chama bombas. PARA
uma manufactura-as cortam-se de gozete inglês, ou cartão, rectângulos de 110 de
conformidade e 20 milímetros de largura, e de paralelepípedo retângulo de 200 milímetros de comprimento e 45 milímetros de largura.

Sobre um dos retângulos de paralelepípedo coloca-se um dos retângulos de cartão de modo que as linhas medianas e os ângulos menores dos retângulos se ajustem perfeitamente. Assenta-se bem perpendicularmente aos ângulos sobrepõe-se um rolo da roda de 16 diâmetros e enrolam-se em torno dele os dois retângulos.

Retire-se o rolo e para um dos ângulos de tiro e finalize o paralelepípedo sobre o topo do rolo. Gira assim formado o corpo da bomba que se carrega pelo lado aberto e giro da pólvora. A até a altura da reboque do cartão e sobra-se o paralelepípedo sobre a pólvora. Tomam-se dois gíos para bombas, que devem girar unidos com tópico e envolver-se com velas e azéites sucessivas e corpo da bomba até que o paralelepípedo escondeu.

Preparadas assim as bombas mergulham-se num banho de:

| Pera negra | 10 |
| Mel de carneiro | 1 |

onde se demoram cinco minutos. Depois de retiradas do banho que deve estar giro, quando ali se introduzem as bombas a ponto de se poder sofrer sem imediatamente o calor, sendo a mão em contato com elas, abre-se em cada uma, com o cravador, um giro onde se introduz um tubo delgado de cana carrega.

Os tubos são de três grandezas para as detonações só tendo em tempos diversos. Por precaução costuma-se humedecer a extremidade do tubo com álcool gomado e jusztar com a pólvora.

Fogos de coir. Os fogos de coir são as lagrimas ou esferas.

A composição das lagrimas varia segundo o coir que se deseja obter, mas o processo de fabrico é sempre o mesmo. Quando se quer obter o coir branco empreza-se:

Salitre	3.75
Enxofre	0.75
Sulfeto de antimonio	1.00

Estas substâncias, depois de reduzidas a pó e misturadas intimamente, humedecem-se com álcool gomado de modo que gomem massa de consistência tal que as lagrimas se possam moldar nas respectivas formas de bronze, ficando com a forma representada na fig. 89.
Colocação da carga no capitel. Se empregarmos os jogos detonantes, deixa-se primeiramente uma cocharra de incêndio (mistura de salitre, enxofre e pólvora) dentro do corpo do capitel, colocam-se três bombas com os tubos mergulhados no incêndio, sobre estas colocam-se as outras seis dispostas em duas camadas e de lá se a nova cocharra de incêndio.

Se em lugar de bombas empregarmos as lagrimas procede-se do mesmo modo, removendo quatro a quatro de modo que formem um cilindro. O capitel contém em geral 12 lagrimas dispostas em três camadas. Cheio o capitel coloca-se lhe em cima um disco de papel cartão e ajusta-se a capula, de modo que as arestas do corpo e da capula fiquem corresponsando bem.

A ligação faz-se empregando por primeiro uma tira de papel gramado de 100 milímetros de comprimento, 24 milímetros de largura e gramas de 10 milímetros. Da-se a massa e coloca-se em volta do corpo junto à linha de unida com a capula e sobram-se as gramas sobre esta. Depois de seca cobre-se a capula com um sector do papel coberto, tirado de um círculo de 90 milímetros de diâmetro, com gramas de 10 milímetros.

O sector assenta sobre a capula e as gramas sobram sobre o corpo do capitel.

Tabela das composições dos jogos de cores empregadas nas balas de esclarecer emas estrelas dos foguetes de sinais.

<table>
<thead>
<tr>
<th>Vermelho</th>
<th></th>
<th></th>
<th>Viola</th>
<th></th>
<th></th>
<th>Azul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orotato de estraneciana</td>
<td>40</td>
<td>Chlorato de potássio</td>
<td>20</td>
<td>parte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enxofre</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Enxofre</td>
</tr>
<tr>
<td>Sulfureto de antinônio</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfureto de cobre</td>
</tr>
<tr>
<td>Carvão</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carvão</td>
</tr>
</tbody>
</table>

4. Montagem e acabamento. Preparado assim o foguete, liga-se-lhe por meio de duas voltas de gizo de vela um tubo de goma de Pindres, como se vê na sig. 87, onde deve entrar a cauda bem apertada. De todos os meios até hoje empreg-
Avisos para dar direção aos foguetes de sinaes a cauda de canna ou de madeira é o que melhor satisfaz. É necessário para prevenir as oscilações do foguete que o peso e comprimento da cauda seja tal que o centro de gravidade do sistema fique colocado um pouco abaixo da base da culatra, e tanto melhores resultados se conseguirão quanto mais distante se achar do centro de gravidade o centro de resistência; circunstância que as caudas leves favorecem. Com efeito quanto menos pesada for a madeira tanto maiores dimensões precisará para fazer equilíbrio ao peso do foguete e por tanto maior superfície apresentará à resistência do ar, o que indubitavelmente concorre para que o foguete no seu movimento de translação conserve melhor a direção primitiva. O comprimento das caudas, sendo de rasquinha, incluindo a parte cheirada, regular por 6 ñ 7 vezes a altura do foguete. Vê-se se o foguete está equilibrado suspendendo-o sobre o dedo, colocado a 2 ou 3 centímetros de distância da culatra. Se o peso da cauda equilibra com o do tubo o foguete está bom.

O foguete depois de armado levava uma pintura com tinta inglêra branca, a duas demas, que se aplicava em todo o foguete em exceção da cauda.

Os foguetes acondicionavam-se em emchetes para objetos diversos por camadas, deixando ir separadas entre si e das paredes do emchete por papel em retalhos ou, melhor ainda, por desperdícios de linho.

Com as caudas de madeira formavam-se feixes de 10 ligados por três ou seis de fio de vela; Sais nos extremos e um ao centro.

II.

Artificios de esclarecer.

Os artificios de esclarecer podem subdividir-se em duas classes:
1º. Artificios Destinados a ser empregados a pequena distância do lugar ocupado, quer estes se coloquem à mão em pontos elevados, quer se façam rolar.
2º. Artificios Destinados a esclarecer pontos do terreno mais ou menos afastados. Os primeiros podem considerar-se artificios de posição, os segundos de projecção.
Artíficios de exposição. Na esta categoria compreendem-se os arrotes, gachas e cabradas etc.

Arróios. Os antigos arrotes hoje substituídos pelo arroto Lamarre, fig. 90, eram feitos de um certo número de gos mal torcidos indizados numa composição que pela combustão, gera uma chama porosa que se alarga e vaza.

Os gos são dispostos sobre uma mera em torno de dois pregos a distância de 1 m de outro, fig. 91, de modo que formando dois gos paralelos sendo torcidos dão um cordão de 0,3 m de diâmetro. Quarenta voltas de gos de 1 m de vão.

Os gos são, em geral, suficientes, para dar a dimensão conveniente. Os gos de 1 m de vão são ligados, à altura de 1 m trago que existe sobre a mera, a unir distâncias de pregos, com um gos de vela de 1 m aproximadamente de comprimento; cujas extremidades se atavam para formar azelela. Os gos de outro gos são cortados à altura do trago, suspendendo-se depois pela azelela. A 0,03 m da extremidade inferior. Dois nós de artífice empregando um para isso dois pedaços de gos de vela de 1 m de comprimento, cada um, estes nós devem ficar nas duas extremidades d'um mesm de diâmetro e gomos aferidos. Introduz-se então, no sentido do eixo do arroto, o toco mais grosso d'uma cavilha de madeira ligeiramente conica, que se manteve aferindo cortando definitivamente os nós de artífice. A cavilha tem 0,220 de comprimento, 0,021 de diâmetro médio e penetra 0,120 no interior do arroto. Com as quatro pontas dos nós de artífice faze uma azelela e mergulhaze o gos dos gos numa caldeira onde-se mantém guardada a composição seguinte:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cera amarela</td>
<td>3 partes em peso</td>
<td>Pez-loiro</td>
</tr>
</tbody>
</table>

Depois de 10 de imersão suspeitam-se verticalmente o gos: de gos sobre a caldeira, e com uma coizier deita-se azelela exteriormente novas camadas de composição regulando-as com um molde, fig. 92, com que se peneire o arroto o arroto d'alto a baixo.

Invítense depois a posição do arroto, suspende-se demais gosa pela outra azelela.
e carrega-se com um peso na extremidade livre. Ulteriormente, se então agitando a composição com os maos, secar-se-ão visivelmente molhadas com água, e cercando o arco, com seis fortes gios, formando duas hélices que se envolvem. Deixam-se então secar à sombra. É necessário ter o cuidado de retirar a cavilha algumas vezes e molhar-a para impedir a aderência. Passadas 24 horas, se se a superfície dos arcos, por meio de um pinóvel, uma demão com o preparado seguinte:

- Colla viva em pó 250 gramas
- Colla fortes 25
- Agua 1 litro

Retira-se a cavilha, deixando assim o alojamento para o ferro arrochar. Para esclarecer uma passagem ou a marcha de uma coluna, devem colocar-se os arcos a 20 ou 30 mm dos outros.

Ordé por espaços de 2 horas, estando em repouso, e em marcha para 1/4. Para o acender certa-se a ligadura e soldámos os gios na extremidade.

A luz é fraca, e para esclarecer uma grande zona, como por exemplo um dos ginásios, um mun caminho ou uma grande superfície, é necessário um número considerável de arcos, porque este só a uma pequena distância, uma dos outros, poder fornecer uma iluminação conveniente.

Artíficios Lamarre. Estes artíficios cuja composição entre oleo de linhagem viscoso e o clorato de potasss são uma chama muito brillante e viva.

Preparação do oleo de linhagem viscoso. Introduzem-se numa vasilha 10 litros de oleo de linhagem puro, colocar-se num furo de uma pedra e aquecer-se por espaços de 15 até à temperatura de 180 °. Inflamam-se o oleo, retira-se do fogão, coloca-se a vasilha num fogão aberta ao chão, e depois do oleo ter arrefecido por espaço de 8', trespasa a vasilha com uma tampa de ferro, conservando-se cerada de gamaos ligera e humida até que tenha arrefecido.

Os 10 litros de oleo ficão reduzidos a 4 litros.

Preparação do estópime. Este pó que se emprega para comunicar o fogo aos artíficios Lamarre, prepara-se de modo ordinário, mas a pasta de golve...
rim e substituída por uma composição formada de:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salitre</td>
<td>1000</td>
</tr>
<tr>
<td>Enxofre</td>
<td>100</td>
</tr>
<tr>
<td>Carvão</td>
<td>250</td>
</tr>
<tr>
<td>Goma arabica</td>
<td>75</td>
</tr>
<tr>
<td>Álcool</td>
<td>500</td>
</tr>
<tr>
<td>Água pura</td>
<td>1000</td>
</tr>
</tbody>
</table>

Prepara-se a composição humedecendo com o álcool e salitre, enxofre e carvão de joio, depois de previamente reduzidos a pó, junta-se-lhe em seguida a água onde se fará dissolver a goma arabica. Esta operação gera-se num gral onde tudo se reduz a pasta homogénea.

Composição branca. A composição de lux branca enjogada nas balas de esclarecer, e nos archotes de 18 de forma igual. Faz-se:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorato de potassa em pó</td>
<td>500</td>
</tr>
<tr>
<td>Ertrato de baryta</td>
<td>1500</td>
</tr>
<tr>
<td>Carvão</td>
<td>120</td>
</tr>
<tr>
<td>Oleo de linhaça viscosa</td>
<td>250</td>
</tr>
</tbody>
</table>

A composição que serve para o fabrico dos archotes de 18 é formada de:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorato de potassa</td>
<td>1000</td>
</tr>
<tr>
<td>Ertrato de baryta</td>
<td>1000</td>
</tr>
<tr>
<td>Oleo de linhaça viscosa</td>
<td>175</td>
</tr>
</tbody>
</table>

Moisturam-se os dois sais finamente polvilhados e incorporam-se com o oleo de linhaça e o carvão, até se obter pasta bem homogénea. A 2.ª composição tem maior brilho e maior intensidade luminosa, mas como pode dar lugar a explosão, quando se emjogar nas balas, restringe-se o seu emprego aos archotes de 18 cuja superfície de inflamação é muito pequena.

Composição vermelha. Emprega-se esta composição nos archotes de lux vermelha, e nos cachos de sigaues:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorato de potassa</td>
<td>1800</td>
</tr>
<tr>
<td>Oxalato de stronziana</td>
<td>300</td>
</tr>
<tr>
<td>Carbonato de stronziana</td>
<td>300</td>
</tr>
<tr>
<td>Carvão</td>
<td>48</td>
</tr>
<tr>
<td>Oleo de linhaça viscosa</td>
<td>240</td>
</tr>
<tr>
<td>Oleo de linhaça ordinaria</td>
<td>6</td>
</tr>
<tr>
<td>Goma bata</td>
<td>14</td>
</tr>
</tbody>
</table>

Moisturam-se os dois sais de stronziana reduzidos a pó e bem secos, juntam-se depois o oleo de linhaça viscosa e o chlorato de potassa, em seguida o resto das substâncias e formam-se pasta homogénea.

Archotes. Os archotes Lamarre brancos e vermelhos consistem num tubo
Os cilindros são feitos de madeira com resina de carvalho e são repousados em suas respectivas composições de goma e carvão, num degrau a um terço e meia altura. Podem carregarse os archotes à mão, colocando dentro do tubo por meio de um escorredor de madeira, pequenos cilindros de composição que se inserem 1/4 de altura por 30 de diâmetro para os archotes de 10, e 1/2 de altura por 12 de diâmetro para os de 18.

Estes cilindros obtêm-se cortando-os a serra-bocada de pasta previamente endurecida a roda, em camada de espessura conveniente, sobre uma garrafa de reboço.

Neste gabão, um grande gato só recebe o carregamento à máquina; que é muito mais econômico e regular.

O archote depois de carregado recebe a escama que se compõe de 3 ou 4 estojos de 0,10 de comprimento dobrados ao meio e introduzidos na composição. Em contacto com estes, estojos coloam-se mais 3 ou 4 que se mantêm ali por uma ligatura que fecha o tubo superiormente. Em seguida, se deixa com uma roda de esfagno granjada que se cola sobre as paredes do tubo, cobrindo-se as granjas com uma tira de esfagno também colada. Debaixo da escala coloca-se uma guta com uma das extremidades fise linhas para desencaifar rapidamente. Começa linjar com uma gaza quanto quer escondidões do óleo e linhaça viscosa que se manifestam na superfície do tubo, lubrificando depois com pó de sabão e envernizando com um verniz hidro-jugo. O pote inferior do tubo jointase então de branco ou vermelho, segundo a natureza da composição, isto é, conforme a cor da luz.

As dimensões, peso e duração dos archotes Lamarre são:

<table>
<thead>
<tr>
<th>Archote 1</th>
<th>Archote 2</th>
<th>Artes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro</td>
<td>0,040</td>
<td>0,018</td>
</tr>
<tr>
<td>Comprimento</td>
<td>0,120</td>
<td>0,150</td>
</tr>
<tr>
<td>Peso</td>
<td>0,700</td>
<td>0,770</td>
</tr>
<tr>
<td>Duração</td>
<td>35</td>
<td>15</td>
</tr>
</tbody>
</table>

Para acender o archote, basta comunicar o jugo ao estojim que constitui a escova. Fixase geralmente por algumas voltas d'um arame de ferro na extremidade d'uma vara. O homem encarregado de conduzir o fogo ter cuidado de o manter.
sempre elevado a cinco da cabeça, o braço inclinado para a frente à 25° aproximadamente para se garantir dos pingos jorvenientes da combustão.

Para o espalhar basta estregar no terreno a parte inflamada. Se for necessário tornar a acender, cortar em ponta a poarta combustada.

Aroelas alcateadas. A aroela alcateada é uma coroa, Fig. 94, feita de cordas velhas ou murras, imregnada d'uma compositão jorvenária para esclarecer.

Preparação das aroelas. No caso de se empregarem cordas velhas é necessário batel dá bem com um masso de madeira, depois reunem-se os pedaços mais pequenos, sobrepondo os muitos juntos, e ligam-se com uma ou duas voltas de giz de velas, dando um nó artificial.

Tomam-se estes pedaços de corda, que devem pesar aproximadamente 210 gramas, e enrolam-se dando 3 ou 4 voltas em torno da mão; cercam-se estas voltas com outras em espiral até restar apenas livre um comprimento de corda de 1/2.

Dá-se então um nó simples não apertado, abrazando as voltas da coroa e dando ainda outras voltas que ligam as diferentes espiras. A extremidade livre da coroa introduz-se numa fios voltas e gizase-se em giz de velas.

Alcançar as aroelas. As coroas assim preparadas mergulham-se durante 10 minutos numa composição formada de:

Per negro 20
Sebo 1

Agitam-se de tempos a tempos com uma espatula, depois retiram-se e deixam-se escoerem sobre a caldeira onde o banho se mantém em g Telas: mergulham-se em seguida em aguas e afeixam-se à mão. Passadas 24 horas vão a um segundo banho formado de partes iguais de per negro e per louro e são logo polvilhadas com serradura de madeira.

Cada aroela pesa, termo medio, 300 gramas; pode levar a quase uma hora, se e tempo estiver sereno e 1/2 hora se houver vento forte. A chama não tem influencia sobre a sua combustão.

As aroelas collocam-se duas a duas sobre leitos de aparas de madeira que,
sendo inflamadas, comunicam logo a combustão às areolas. Para esclarecer
uma passagem ou a marcha de uma coluna é necessário espaçá-las de 30 a 100 m.
Os areolas estão hoje no caso dos antigos arqueiros.
Fachinas alcatraçadas. A fachina alcatraçada é um pequeno seixo de
rastos secos, de 0,50 de comprimento e 0,70 de diâmetro, impregnadas da mesma
composição que serve para as areolas.
Preparação das fachinas. Os fachinas fabricam-se ao modo ordinário,
ligando-as no centro e a 0,05 das extremidades com gizo de ferro recisado. No su-
tido do eixo introduzem-lhes uma haste de madeira cilíndrica, para montar
ali um vaso; o arame não se deve apertar muito para que fiquem permea-
veis e recebam bem o alcatrão.
Os dois topos da fachina cortam-se perpendicularmente ao eixo.
Alcatraçar as fachinas. Retiram-se as hastes de madeira, untam-se com
oleo e tornam-se colocar-se de novo no seu respectivo lugar. Hergulham-se em
seguida as fachinas successivamente, pelos dois topos na primeira composi-
ção que se impregna para as areolas, e em quanto estão mergulhadas um
esporário deixa algumas colheres da mesma composição sobre os topos que gi-
cam fora do banho. Deixam-se escorrer e esfriar e introduzem-se então num
balde com água, onde um esporário com as mãos untadas em oleo lhes afa-
ga as superfícies.
Retiradas da água são colocadas sobre tábua molhadas, untam-se de novo
com oleo as hastes cilíndricas e colocal-se ao alto as fachinas.
Passadas 24 horas entram no 1º banho, mas então já a haste de madeira ci-
ilíndrica se deve ter retirado. Ao sair do banho colocam-se sobre serradura de
madeira e são polvilhadas com estu tanto interior como exteriormente. Os ex-
tremidades das fachinas são finalmente mergulhadas, n'uma extensão de
2 a 3 centímetros na composição da pedra de jogo. Para incendiar dispõem
se em pedras colocando entre as fachinas espinhas de madeira seca, estojões,
vela de composição, de modo que o jogo se propague facilmente por toda
a massa.
Quando se sugerem como sinais ou para esclarecer a noite, colocam-se em estacas de madeira ou seitam-se sobre o terreno. Para esclarecer, se usam juncas de 10 milhas dos outros se estão situados e a 15 milhos contrário. As fachadas alcatrádas andam por espaço de 1/2 hora.

Barril de esclarecer. Este artifício consiste em um barril cheio de aparas de madeira imprevididas de juncos, cercado exteriormente de outro barril que o preserva das avarias.

Praticam-se um juro de 0 h a 0 h 10 na parte de cada um dos juncos do barril, depois um grande número de outros juros de 0 h 12 a 0 h 15 em quinze vezes e repartidos igualmente na superfície dos juncos e baixos. Adaptam-se tare e calços ao barril interior para o manter em posição no centro do barril exterior, e abrem-se neste juros que correspondem aos do barril interior. As aparas que devem constituir a carga são mergulhadas um por louro jundido, depois calculados quando ainda quem, dentro do barril, a que se tem tirado, de serviço o jundido. (Fig. 95)

A operação, reservando-se no sentido do eixo do barril, um canal, empregando para isso um cilindro de madeira untado do salo.

Colocadas as aparas, se junse o jundido, guarnecem-se os juros com bossas de vela mista, e quando o barril estiver jundido, tiram-se o cilindro de madeira e se deixa pelo origem central do jundido. No vazo deixado pelo cilindro colocam-se dois geixos de velas de composição de modo que os topos destes geixos de 0 h 15, terão medias sujeitas à superfície dos juncos do barril. Fazem-se comunicar todos os geixos de vela mista entre si e com os geixos centrais por meio de estojos introduzidos em tubo de pajel. Aparece-se nos pontos de comunicação de jago e em toda a superfície exterior do barril envolvido e na interior do invólucro uma fumaça de uma mistura de jago louro e jago negro jundidos. Colocam-se então, um dentre os outros e se junse o jundido no barril exterior. Para comunicar o jago ao barril se junse um geixo de vela Biekhéd em contacto com as escoras de vela mista, mantendo-se nos seus respectivos lugares por esta, para alcatráda. O barril de esclarecer é um artifício volumoso e difícil de preparar. Quando se principiarem para iluminar a brecha ou o jundido do jago. Depois de lhe comunicar o lume, tendo condurido o barril até ao ouvido da brecha, puser-se rolar para o jago mais conveniente e desce-se por meio de cordas até ao jundido do jago. Lopo que o barril começa a arder escavam-se pelos orígenes juntos de chama, para princípio galéquios, mas a chama que se em breve a parte superior do barril e produz-se um brilho jago de incêndio.
Artifícios de projeção. Entre estes artifícios contam-se as balas e granadas de esclarecer, mas a sua importância bem como a dos artifícios de projeção é hoje muito pequena depois do emprego da luz elétrica.

Entre nós ainda se fabricam balas de esclarecer de diferentes tipos de que daremos uma ideia.

Balas de esclarecer com involúcro de papel. No processo de fabrico deste artifício temos a distinguir:

1.ª - Manufatura do involúcro;
2.ª - Carregamento;
3.ª - Escorvamento;
4.ª - Pintura.

1.ª - Manufatura do involúcro. Empregam-se para este fim formas esféricas de madeira das dimensões seguintes:

<table>
<thead>
<tr>
<th>Calibre</th>
<th>Raio das esferas</th>
<th>(\text{mill})</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 (^{\circ})</td>
<td>(r)</td>
<td>62</td>
</tr>
<tr>
<td>22 (^{\circ})</td>
<td>(r)</td>
<td>93</td>
</tr>
<tr>
<td>27 (^{\circ})</td>
<td>(r)</td>
<td>117</td>
</tr>
<tr>
<td>32 (^{\circ})</td>
<td>(r)</td>
<td>137</td>
</tr>
</tbody>
</table>

Cortam-se de papel cartucho inglês, ou melhor ainda, de papel de embrulho inglês, eijíses de diferentes dimensões conforme os calibres.

<table>
<thead>
<tr>
<th>Calibre</th>
<th>(r)</th>
<th>(\text{mill})</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 (^{\circ})</td>
<td>(0,220)</td>
<td>(0,060)</td>
</tr>
<tr>
<td>22 (^{\circ})</td>
<td>(0,350)</td>
<td>(0,070)</td>
</tr>
<tr>
<td>27 (^{\circ})</td>
<td>(0,400)</td>
<td>(0,080)</td>
</tr>
<tr>
<td>32 (^{\circ})</td>
<td>(0,450)</td>
<td>(0,085)</td>
</tr>
</tbody>
</table>
Toma-se a fórmula correspondente ao calibre e envolve-se com jogo de cartucho fino; sobre este envolver não se colando as elíptices, successivamente umas sobre outras, (tendo-se primeiramente cortado os contornos com galgos obliquos e mergulhando em água por espaço de 1/2 hora pelo menos).

Logo que o envolver tenha o diâmetro seguinte:

Para calibre 15°
Diametro do envolver 132 mill

\[
\begin{array}{ccl}
\text{Para calibre 15°} & \text{Diametro do envolver} & 132 \text{ mill} \\
\text{22°} & 147 \text{ mill} \\
\text{27°} & 242 \text{ mill} \\
\text{32°} & 282 \text{ mill} \\
\end{array}
\]

cortase a serra por um dos círculos maximum da esfera, tira-se a fórmula, tomase a mira as duas meias esferas, cortadose a mesma com uma ou duas tiras de gume de algodão, e para maior consistência, aplicar-se mais duas ou três tiras, cravando-as umas com as outras. Ligadas assim as meias esferas, continua-se a colar mais elípticas até alcançar o diâmetro marçado pela passadeira do respectivo calibre.

2.º - Carregamento. Estando o envolver completamente seco, coloque-se, com a abertura para cima, sobre uma corda de corda e carregue-se com a composição seguinte:

\[
\begin{array}{c}
\text{Calibre} \quad 4 \\
\text{Enxofre} \quad 1 \\
\text{Antimonio} \quad \frac{1}{2}
\end{array}
\]

Prepare-se o mixto, reduzindo os componentes a pó, misturando-os intimamente, e fazendo-os de misturados duas ou três vezes pela gemina.

O misto ecale-se ao modo ordinário dentro do envolver.

3.º - Escovamento. No centro da abertura com um raio igual a:

\[
\begin{array}{c}
55 \text{ mill} \quad \text{para balas de 15°} \\
65 \text{ mill} \quad \text{22°} \\
75 \text{ mill} \quad \text{27°} \\
85 \text{ mill} \quad \text{32°}
\end{array}
\]

Traça-se um círculo sobre a superfície esférica da bala e dividase este círculo em três partes iguais; e nos joelhos correspondentes de divisão abre-se, 24°.
com uma broca, guros de:

<table>
<thead>
<tr>
<th>milimetros</th>
<th>20 para balas de 15°</th>
<th>25°</th>
<th>27°</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>22°</td>
<td>30°</td>
<td>32°</td>
</tr>
</tbody>
</table>

Introduzem-se nestes guros, que não devem interessar no mixto, as cavilhas de escoramento empregando para isso um masso de madeira; tira-se então uma das cavilhas e carregase o guro com zolvarim calçado com 10 joaná das semassso por cocharra de composição. Antes de seitar as suas últimas cocharras colocam-se suas pontas de estações cruzadas. Por um processo análogo se carregam os guros restantes.

Embelem-se os guros colando sobre os estações uma roseta de cartão.

<table>
<thead>
<tr>
<th>milimetros</th>
<th>20° de diâmetro para balas de 15°</th>
<th>22°</th>
<th>27°</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>30°</td>
<td>35°</td>
<td></td>
</tr>
</tbody>
</table>

e sobre estas rosetas colam-se outras de joaná.

4. Pinturas. Escorvada a bala alisa-se com roladores de ferro até se aparecerem todas as irregularidades da sua superfície, em seguida se dá uma camada espessa de guide e em quanto está húmida, pode-se com serradura de madeira, guia, que deve seiar uniformemente espalhada por toda a bala.

Quando o bala estiver bem seca, pinta-se com tinta greta inglesa a três demais, as rosetas correspondentes aos estações são pintadas com tinta branca.

Convenham observar que na manufatura do involucro de papel se deve deixar secar completamente cada uma das camadas antes de colher a seguinte. O que em breve se ver se girar ao sol tem o perigo de ferver no acto do carregamento, por maior que seja a espessura do involucro. Estas balas oferecendo pequena resistência às grandes cargas de projéctil só iluminam a componhha a distância inferior a 800 metros.

Fazem-se ainda balas com involucro de papel e carda, e outras com in-
volcão de jaspe e corda, mas todas elas têm pequenos alcances e só podem
illuminar a curtas distâncias.
Observa-se que nestas balas se suprime a granada de mão que antigamen-

to se empregava, não só para lhe dar maior peso, mas também para evi-
tar que o inimigo imediatamente se aproximasse destas quando pretende-
se apagar.
Granada de esclarecer. Estas granadas são de canteiro-volcanizada todo
um cilindro de 6 m. de diâmetro para introdução da carga e para a coloção da
espoleta. A esfera vácuo pesa 55 gramas e pode conter aproximadamen-
te 190 gramas de composição. Para carregar as emprega-se um giz e um
calador de ferro. A carga é formada pela composição Laranjeira, branca.
A espoleta consta de um tubo de estanho de 0,054 de comprimento 0,006 de
diâmetro, que contém a composição seguinte:

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polverim</td>
<td>3</td>
</tr>
<tr>
<td>Salitre</td>
<td>2</td>
</tr>
<tr>
<td>Enxofre</td>
<td>1</td>
</tr>
</tbody>
</table>

Preparam-se os tubos mergulhando na glicerina os tubos por fim de 0,020 de diâme-
tro exterior e 0,016 interior, previamente carregados com a respectiva composição.
O tubo que forma a espoleta é fechado na sua extremidade inferior por uma
redella de calho de estanho coberta de goma de baca, e na outra extremidade
é embebidado uma ponta de estojoim segura por um estrangulamento
feito no forjado tubo. Sobre o estojoim aplica-se uma coza de papel.
Estas granadas são atiradas à mão ou à jarda, mas podem também
ser lançadas por morteiros. Neste caso coloca-se um certo número de gra-
nadas, por exemplo n''um cesto, e submete-se este sobre a carga do mortei-
ro. Quando se empregam este meio é conveniente e mais seguro communi-
car o gato às granadas no momento de o comunicar a carga. Empre-

g-se para isto estojoins de comunicação. Cada uma destas gran-

das esclarece um círculo de 10 metros de diâmetro durante um tempo
que varia de 1 a 1½.
III.

Artifícios de incêndio

Além das fachadas alcatradas e das arvores que, como dissemos, podem também servir como artifícios incendiários, engenum-se hoje diversas composições a que se dá o nome de pedra de fogo. Esta coloca-se no interior dos projéteis secos contendo em pequenos cartuchos cilíndricos de cartão ou de cobre.

Composição da pedra de fogo.

<table>
<thead>
<tr>
<th>Cebu de carneiro</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celophonia</td>
<td>3</td>
</tr>
<tr>
<td>Therebertina</td>
<td>1</td>
</tr>
<tr>
<td>Enxofre</td>
<td>4 partes em peso</td>
</tr>
<tr>
<td>Salitre</td>
<td>10</td>
</tr>
<tr>
<td>Estopim</td>
<td>1</td>
</tr>
</tbody>
</table>

Funde-se primeiramente o cebu, despois a celophonia, juntase em seguida a therebertina, agitando a mistura com uma espátula, e finalmente o salitre, enxofre e antimonio misturados intimamente e passados à fomeira. Com esta composição enchem-se cartuchos cilíndricos de cobre ou de projétil cartão de 70,55 de altura e 70,12 de diâmetro. Para assegurar a inflamação da pedra de fogo no momento da explosão do projétil, escurem-se os cartuchos nas suas extremidades com estopim e polverem.

Petroleo. O petroleo é um dos mais poderosos meios de incêndio que se conhece. Espalha-se sobre as matérias combustíveis, ou introduz-se num recipiente onde se enegulha um cartucho inimpeável de zolatra ordinaria. O cartucho gera em seguida inflamação no petroleo e explosão em todas as direções.

Fogo gregoriano. O grego gregoriano obtém-se misturando a gria 6 partes de salitre, 8 de enxofre e 4 de oleo de nargueta. A nargueta só se junde no último momento e pode ser substituída pelo petroleo.

Fogo geniaco. Este grego obtém-se dissolvendo o fósforo em sulgurto de carbono. Esta dissolução é muito perigosa e deve guardar-se, hermeticamente fechada em grego de rolo em brasa esmerilhada, segurando esto ainda com uma volta de grio. Pode-se quebrar o grego e sobre matérias inflamáveis para produzir-se o incêndio. Esta composição pode ser instantaneamente.

Composição austríaca. A composição austríaca consta de - 40 partes de benveceo e 20 de zolatra negro em dissolução em álcool, 3 de linho e 5000 cartado, 40 de enxofre, 30 de salitre, 30 de zolatra e 40 de zolatra em grão.
Composição Lamarre. As composições de esclarecer de M. Lamarre podem servir também como matérias incendiárias.

IV

Composições asfixiantes.

Bala de jumão. A bala de jumão é um saco cilíndrico de jumão cheio de uma composição formada de:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Salitre</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Enxofre</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Carvão</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Per negre</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Per louro</td>
<td>1 1/2</td>
<td></td>
</tr>
</tbody>
</table>

Fundem-se juntamente o per louro e o per negre, depois reunem-se às outras substâncias juntamente misturadas. Quando se carrega o cartucho reservase-lhe um alojamento para a escorova, introduzindo na massa, antes de consolidar, uma cavilha de madeira. A escorova compõe-se de algumas pontas de estepe, que se introduzem no alojamento deixado pela cavilha de madeira, mantidas no seu lugar pela composição seguida:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Salitre</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Enxofre</td>
<td>2 3/4 partes em peso</td>
<td></td>
</tr>
<tr>
<td>Polverim</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

A escorova é encerada por uma roda de jumão.

Artifício de sobrecar. Preparam-se congelando em moldes de madeira uma mistura intima das substâncias seguintes:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Salitre</td>
<td>5</td>
<td>3/4 parte em peso</td>
</tr>
<tr>
<td>Enxofre</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

A escorova é preparada como a da bala de jumão. Este artifício quando arde produz grande quantidade de fogo suficiente com tosnescência revigorante sem se ver a forma:

\[K_O A_x O^5 + 2 S = K O S _0 ^3 + S O^2 + A_x \]

Artifício de jumão. Esta composição, que serve para enxastar as galerias de mina é formada de:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebu</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Per</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Alecrim</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Enxofre</td>
<td>8</td>
<td>3/4 partes em peso</td>
</tr>
<tr>
<td>Thebeutina</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Polverim</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Estopa em roxa</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

O cebu, per e alecrim fundem-se juntamente, depois introduzem-se no banho as outras substâncias pela ordem por que não designadas.
Apendice

Luz eléctrica.

O emprego da luz eléctrica nos trabalhos da guerra substitui hoje, de um modo muito vantajoso, os antigos artefios de sinaes e de esclarecer.

Hodiernamente, a acção dos combateantes pronunciou-se a grandes distancias, e como os artefios sidosos e ténicos só podiam arrajar-se a 600 e iluminavam apenas eficazmente uma área de 40 ou 50 metros de raio, tornou-se necessário emprestar meios mais poderosos de iluminação. E como a luz eléctrica se presenta a produzir um feixe de raios luminosos constantes ou a manifestar-se por elevações ou intermitências, sé que é fácil aproveitar-la para esclarecer e para transmissão de sinaes.

Depois dos grandes progressos realizados no fabrico dos artefios de projeção, lampadas e máquinas eléctro-facinicas, a aplicação da luz eléctrica aos usos da guerra teve uma solução verdadeiramente prática.

Artefios de projeção. Estes artefios servem para iluminar os objectos a grandes distancias, projetando sobre elles a maior quantidade possível de raios luminosos emitidos por uma luz de arco voltagem. Em todos estes artefios a luz eléctrica fica colocada no foco do reflector.

Conhecem-se hoje três espécies de reflectores: os de espelho parabolico de Sautet e Lenonier e os de Mcangin. Os do primeiro sistema são muito difíceis de construir, formam-se com facilidade e perdem além disso muito de seu poder reflector, por pequena que seja a gorfa do brilho da superficie. Estas circunstancias tornam preferíveis os dois ultimos sistemas.

Projector Mcangin. O coronel de engenheria do Exército Grunge, M. Mcangin, abriu-se para o seu projector o princípio de reflexão de luz combinada com a reflexão, empregando para isso uma superficie esférica, mais fácil de construir e menos sujeita a deformar-se que a parabólica.

O reflector de superficie esférica não emite, como o parabolico, os raios paralelos, mas emitiem em diferentes direcções, produzindo uma grande dispersão de luz
quando se pretende iluminar objetos que ficam a grande distância. Para reme-
dir um tal inconveniente Sir W. Croogin fez ar reflector uma gôrma especial.

Consta este de um espeelho de crystal, concavo convexo, cujas faces ABC e DEF,
Fig. 96 são superfície esféricas de raios diferentes. A face con-
versa a ABC, onde se reflecte a luz, é estomada, e os raios luminosos
que sobre ella incidem, quando reflechidos, atravessam duas vezes
a espessura do vidro e sofrem por tanto duas refrações em seu
tido eposto.

O resultado destas mudanças de direção depende da relação que
existe entre o conhecimento dos raios das suas superfície esfhe-
ricas. Nos reflectores de W. Croogin as suas superfícies estão dis-
postas de modo que, corrigida a aberração esférica completamente,
os raios luminosos reflectidos pelo espeelho saem em direc-
ções paralelas, formando uma superfície címuda.

Isto seria rigorosamente exacto se o foco luminoso fosse nunca
mais, porque como se vê de este caso o geisce havia tomar semvore a gôrma fum-
cre e cuja abertura seria igual ao angulo debaixo do qual se vé a luz desde a
vertice do reflector. Não intanto a potencia destes espeelhos é muito vezes mau
que a dos reflectores parabólicos e esféricos e por isso se prefrerem os de W. Croogin
que se fazem actualmente, para os usos militares com as dimensões seguintes:

De 0,40 de Diametro com 0,70 de distância focal
De 0,60 " " " 0,322 " "
De 0,40 " " " 0,240 " "
De 0,30 " " " 0,160 " "

O reflector é colocado n’uma caixa címuda de pequena altura, mas
de base um pouco maior que o lumeu do espeelho, para inspeçêr que a
luz se possa ver lateralmente. Posteriormente o espeelho é resguardado
por uma enama de gesso de proesa. A Fig. 97 representa a Disposição
d‘um projeccor completo de 0,60 de Diametro. O espeelho B está mantido
n’um arro metallico e gôrma e guarda da caixa onde se coloca a lampada.
Eletrica. Em B vê-se a aplicação do gesso para proteger o espeelho. A caixa tem diferentes aberturas para renovação do ar, e é superiormente protegida por uma cobertura de sobre A. Do lado oposto ao espeelho, isto é, na parte anterior da caixa colocam-se dois vidros, um selado, que só se abre para pôr e tirar a lampada, o outro, que tem a forma de uma lente divergente, aplica-se quando é necessário aumentar o tamanho do campo iluminado. Para observar facilmente a posição da luz, rectificada a seguir precisamente, existe um tubo L, munido de uma objectiva; n'uma das extremidades, e na outra, de um prisma com uma face desgostada, onde se reproduz a imagem dos carvões e dos arcos voláteis. O aparelho tem dois movimentos: um no plano vertical entre no plano horizontal. Na parte fixa E da base assenta o prato movel D', com as hastas DD onde se apoia o projeetor; as alavanças C e M servem para girar o aparelho depois de orientado.

Lampada. A lampada é movel e vai montada sobre uma base de latos E que entra em suas ranhuras L e K' da caixa do projector.
Na parte superior da base está fixa uma haste \(H \), que serve de guia a um pequeno tubo \(h \), onde se coloca um dos carvoes \(H \). O tubo \(h \) tem uma camada com pó escuro que enrosca no parafuso \(N \). A manivela \(N \) gira subir ou descer o carvão \(H \). O outro carvão está também ligado ao parafuso \(N \), que, na parte superior, tem a rosca em sentido contrario e de passo duplo, com o fim dos carvoes se aproximarem convenientemente, porque como o superior corresponde ao polo positivo, se consumem com maior rapidez, do que o inferior corresponde ao polo negativo. Os dois carvoes, a haste \(h \) e o parafuso \(N \) estão colocados com uma inclinação de 30°, porque, segundo as experiências de Sautter e Lemonnier, com as máquinas de corrente contínua, obtém-se maior intensidade luminosa dando à lâmpada a posição inclinada. Este sistema não há regulador; a aproximação dos carvoes consome-se à mão.

Este não oferece inconveniente quando a luz se deva utilizar durante um pequeno tempo; no caso contrário empregam-se então uma lâmpada do sistema Serrín, que se deve levar sempre de reserva.

Para este último caso podemos suspender a lanterna automática, servindo do nós da lanterna desenjota que tem a vantagem de ser de fácil manuseio, insensível aos movimentos bruscos que possa receber quando se transporta, não se estraga e recebe o máximo de intensidade de luminosa que a máquina pode dar, porque, como se regula à mão, toda a corrente elétrica se aproveita para produzir luz, e que não ocorre com a lâmpada Serrín ou qualquer outra de regulador automático que consome em pouca parte da intensidade luminosa uma parte da electricidade produzida.

Com a lanterna onde os carvoes se movem à mão podem estes colocar-se à distância máxima que a corrente permitir, e que aumenta a intensidade luminosa. Estas lâmpadas exigem carvoes mais grossos que as automáticas, para se poder abandonar a observação da sua marcha, durante os primeiros dois ou três minutos em que é necessário manobrar o aguiareto. Tem isto o inconveniente de os carvoes se não consumirem por igual e produzir-se luz de intensidade variável. Os carvoes delgados que se empregam nas lâmpadas 25°.
automáticas, porque se consomem muito rapidamente, não convém para as lampadas demais.

Para melhor aproveitar a luz, coloca-se sobre a haste um pequeno reflector que recebe os raios luminosos que partem em direção contrária ao espelho, projetando-os de novo sobre este. Nos reflectores de 0,90 de diâmetro emprega-se uma lente que jica colocada entre o espelho e os carvoes, de modo que a luz se procura no centro óptico da lente. Esta disposição faz com que se aproveite maior quantidade de luz, como se vê na fig. 98 onde a lente A recolhe e envia ao espelho os raios luminosos emitidos num espaço angular de 100°.

Às pressas em que, com esta disposição, o espelho só receberá os raios compreendidos num ângulo de 68°. Desta forma, aumenta-se a intensidade do campo iluminado, sem necessidade de aumentar as dimensões do espelho.

Dimensões do campo iluminado.

Do se produzir a luz no foco do espelho, este reflete um feixe ligeiramente conico, uma potência vinte vezes maior da que seria um espelho esférico ordinário; o campo, porém, de iluminação é tão limitado que apenas compreendendo uma superfície pouco maior que a dimensão do reflector. Para obter maior amplitude, afastar-se ou aproximar-se do espelho o foco luminoso, fazendo mover o para-fusso L (fig. 97). O afastamento ou aproximação da luz têm grande influência na grandezza da superfície iluminada. Observa-se que quando a luz se afasta a maior distância do espelho, o espaço iluminado a um quilômetro de projéctor varia de 15° de largura, que tería com um reflector de 0,90 estando a luz no foco, até 115°, o que se consegue com o mesmo afastamento quando a luz é a 0,30 do espelho. Na distância de 4 quilômetros a superfície iluminada chega a ser de 46°. A tabella seguinte indica a divergência que se obtém com projectores de diâmetros diferentes, afastando a luz do espelho. A mesma diversidade se obtém até certo ponto aproximando convenientemente.
<table>
<thead>
<tr>
<th>Especies de projetores.</th>
<th>Diametro do Espelho</th>
<th>Distância em metros</th>
<th>Foco Luminoso</th>
<th>Superfície Iluminada e Distancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espelho de 0,30 de Diametro</td>
<td>0,76</td>
<td>2°</td>
<td>30 60</td>
<td></td>
</tr>
<tr>
<td>Arco voltaico de 8000 de comprimento</td>
<td>0,17</td>
<td>9°</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Machina Gramme M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espelho de 0,40</td>
<td>0,24</td>
<td>2°</td>
<td>45 90 135</td>
<td></td>
</tr>
<tr>
<td>Arco de 0,012</td>
<td>0,25</td>
<td>6°</td>
<td>60 120 180</td>
<td></td>
</tr>
<tr>
<td>Machina Gramme AG</td>
<td>0,26</td>
<td>11°</td>
<td>100 200 300</td>
<td></td>
</tr>
<tr>
<td>Espelho de 0,60</td>
<td>0,45</td>
<td>2°</td>
<td>50 60 90 120 180</td>
<td></td>
</tr>
<tr>
<td>Arco de 0,015</td>
<td>0,44</td>
<td>4°</td>
<td>78 116 234 312</td>
<td></td>
</tr>
<tr>
<td>Machina Gramme DQ</td>
<td>0,46</td>
<td>6°</td>
<td>118 236 354</td>
<td></td>
</tr>
<tr>
<td>Espelho de 0,90</td>
<td>0,76</td>
<td>2°</td>
<td>15 30 45 60 75 90 145 175</td>
<td></td>
</tr>
<tr>
<td>Arco de 0,015</td>
<td>0,77</td>
<td>3°</td>
<td>25 50 75 100 145 175</td>
<td></td>
</tr>
<tr>
<td>Machina Gramme DQ</td>
<td>0,78</td>
<td>4°</td>
<td>45 90 135 180 225 250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,79</td>
<td>5°</td>
<td>60 120 180 240 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,80</td>
<td>7°</td>
<td>112 224 345 460</td>
<td></td>
</tr>
</tbody>
</table>

A divergência assim obtida produz-se tanto no sentido de largura como de altura, e sendo ordinariamente a terra ou o horizonte que se deseja iluminar, poder-se-á sem utilidade alguma, uma certa quantidade de luz. Para evitar esta parte de luz e fazer que a extensão iluminada aumente só no sentido horizontal, explica-se ao apoiarelo uma tânto que é uma lente divergente analógica de Fresnel, formada por uma série de vórtices plano-cilíndricos (fig. 99) conseguindo-se divergências de 12°-15°, com efeitos de luz que só teriam 2 ao sair do espelho.

Quando se usa o apoiarelo sem esta lente e a luz se produr ao foco, vê-se o efeito limitado por uma circunferência quasi sem sombra e de intensidade bastante uniforme em toda a sua extensão até 20° de horizonte, podendo observar-se dentro desta área, bem distintos e claros, objetos, tais como edifícios etc., que estão situados a 1000 metros de distância. Deve observar-se que quanto maior será a superfície iluminada, tanta menor será a quantidade de luz que recebe cada porção da superfície. Como nas operações militares se não dispõe de excesso de luz, haverá necessidade de aproveitá-la concentrando-a no maior gasto dos casos.
Transmissão da corrente. Quando se coloca a lampada dentro da caixa, (Fig. 97) e se faz em atividade a máquina elétrica, que deve produzir a luz, a corrente emitida chega por um condutor, que se acha ligado em G, até ao tubo G. Debaixo do porão D há dois arcos de bronze, embutidos num aço. Se madera que estabelecem o contacto e a corrente continua por um gis condutor de cobre, que se vê saindo dentro da haste D, e chega até G. Onde se transmite à lampada. Prodir-se ali à luz e segue depois pelo condutor respectivo a outra haste D em caminho análogo até G onde está ligado o outro condutor. Todos os condutores estão isolados bem como a haste K. A lampada acha-se construída de modo que pode receber a corrente estando montadas na caixa ou separada dela.

Disposição que se dá aos projectores e máquinas para o serviço de campanha.

Os aparelhos de que temos falar são os que estão em uso para utilizar a intensidade da luz elétrica nos serviços militares, quando seja mister iluminar objetos distantes, porém, é necessário fixar-se num máquina que produza a luz e um motor que aponha em movimento. Em campanha, as máquinas e vapo em as únicas que podem fornecer a quantidade de movimento que se precisa. Devem ser leves, de pequeno volume e que não tenham órgãos muito delicados e suscetíveis de se destruírem. Convene, sobre tudo, que entrem em pressão em pouco tempo; que não transmitam a força por meio de correias, porque deixariam de funcionar em presença de uma pequena chuva e da humidade; nem também por engrenagens atentando ao grande número de voltas que têm de comunicar ao eixo da máquina elétrica. Devem também estar bem equilibradas para que não haja choque nem vibração. Estas vantagens só podem conseguir-se à custa dum maior consumo de vapor, evitando a prevaricação por engrenagem; mas como em campanha a questão económica é secundária, não há inconveniente em empregar motores que respeitem todas essas condições necessárias.

O modelo adotado é do sistema Brotier.50 três cilindros, apresentando um pequeno volume, tendo ainda a vantagem de não transmitir directamente o movimento à máquina elétrica por engrenagens de correia. A velocidade que se emprega é do sistema Flood, pela facilidade com que entra em pressão, começando a
produce vapor quasi desde o momento em que se acende o chaminé, é bastante baixa e é usado para poder entrar debaixo das abobadas e camadas das fortificações.

Máquina elétrica. A máquina elétrica que ordinariamente se emprega é a de Gramme, de que no comércio se encontram diferentes tipos (1).

Condutores. Para a transmissão da corrente elétrica, é lâmpada empregada um condutor de gis de cobre isolado. A grossura deste deve variar com a intensidade da corrente, porque, sendo-se usada um condutor mais delgado do que convém, aquece muito e pode-se, portanto, para a produção de luz, a quantidade de eletricidade que se converte em calor.

Quando o condutor deve ser muito grosso, já se de vários gis, porque está menos corpos e rompe-se e embora se rompa algum dos gis nem por isso se interrompe a corrente. Geralmente, os dois condutores que formam o circuito remetem-se de uma só corda para facilitar a manobra.

Os diâmetros dos condutores que se empregam com os diferentes tipos de máquinas são os seguintes:

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Diâmetro</th>
<th>Secção</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>25 mm</td>
<td>7,53 mm²</td>
</tr>
<tr>
<td>AG</td>
<td>50 mm</td>
<td>15,25 mm²</td>
</tr>
<tr>
<td>CT</td>
<td>50 mm</td>
<td>30,39 mm²</td>
</tr>
<tr>
<td>CQ</td>
<td>100 mm</td>
<td>30,39 mm²</td>
</tr>
</tbody>
</table>

Este material deve ser acondicionado de modo que seja fácil transportar aos pontos onde convém o seu emprego.

Modelo de forração e costura. No este modelo empregava-se o reflector de Gramme de 0,90 de diâmetro e a máquina de Gramme tipo DQ. A corrente continuada, cujos electro-imãs gisam e muito largos estão colocalados horizontalmente. Um comutador que vai sobre as armaduras permite dispor a máquina instan

(1) Os condutores indicam com diferentes letras os diversos tipos de máquinas que fabricam, sendo M de 200 lâmpadas Corel, AG de 600 e DQ de 400; CT de 1000 e CQ de 2000.
Tome-se em pressa em quantidade, conforme se desejar.

No primeiro caso a luz produzida é de 1000 lampadas Carcel, no segundo caso chega à 6000 máxima intensidade luminosa que se pode produzir em boas condições. A máquina eléctrica e a de vapor mantém-se sobre uma plataforma, se o seu emprego é obrigado a um ponto fixo, ou sobre um carro apropriado caso seja necessário transportá-lo. Em qualquer dos casos o projector coloca-se sempre sobre um carro de madeira leve, de modo que possa girar com facilidade em todos os sentidos, afin de se projetar a luz sobre os pontos do terreno que convém iluminar, como se vê na fig. 100. O reflector E coloca-se no centro e a uma altura tal que o foco luminoso siga a 1,50 acima do terreno, junto do aço para não se ver as caixas A e C.

Na caixa C, vê-se o regulador Térmico e em A, 100m de condutor de fogo, enrolado num carreté que se mantém com a manivela representada na fig. 100. O projector pode manejar-se e transportar-se independentemente das máquinas ou pode montar-se tudo sobre o mesmo carro.

O alcance útil do projector é de 7000m. Quando tiver de empregar-se na iluminação de pontos distantes, vae-se sobre o carro o motor Brotherwood de três cilindros de 0,745 de diâmetro com força de 13 cavalos, uma caldeira Diels, a máquina Gramme tipo DQ, por viação d'água e combustível, uma caixa com utensílios tais como luvas de ouro, escovas metálicas de reserva para a máquina eléctrica, etc.

Com o mesmo máquina Gramme podia empregar-se um projector de 0,60, mas como a força da luz é maior do que convém para este, torna-se necessário um grande cuidado para
evitar que o espejo de mão quebrasse ao arrojeurar depois de apagada a luz.

Modelo de campanha. Este é menos pesado que o anterior, mais fácil de transportar, mas produz luz menos intensa. O reflector de 1800 mm de comprimento produz 1000 lux. A máquina Grambe adotada é do tipo 0,80 m³ e quando montada em quantidade, produz uma intensidade luminosa de 2000 lux. M. à 1600 mm de altura. Quando montada em quantidade, produz uma intensidade luminosa de 2000 lux.

Modelo para portes destacados. É mais leve que os anteriores e o seu alcance é de 3000 m.

Emprega-se o projetor de 0,40, a máquina Grambe tipo AG e motor de três cilindros de 0,80 e da força de três cavalos.

Este modelo todas as máquinas que constituem o sistema são montadas no mesmo carro. O projetor pode empregar-se estando montado sobre o carro, ou separando-se para servir-se dele como nos casos anteriores.

Apesar da sua maior ligeireza, este tipo é ainda muito pesado (1900 kg) e é difícil empregar nos terrenos accidentados e por isso construí-se debaixo de mesmo formato e segundo os mesmos princípios, um aparelho muito mais ligeiro, que no passo de dificuldade se posa transportar a mão. Para situações de iluminar a distâncias que não excedam 1000 m. Grambe estudou um outro tipo de máquina e que se pode mover a longo.

Este novo tipo produz uma luz de 50 a 70 lux. A máquina Grambe, tem electro-imãs polos e recebe o movimento por meio de manivela. Com este aparelho se o reflector metálico parabólico de 0,30 e uma lâmpada incandescente mantendo-se o projetor sobre um travejino móvel em torno de um eixo vertical.

Com os 50 lux de giro condutor que acompanham este aparelho, dá-se tudo 200 lux.

(Fim)
<table>
<thead>
<tr>
<th>Capítulo 1.º</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. - Salitre</td>
<td></td>
</tr>
<tr>
<td>Propriedades gerais do salitre</td>
<td>5</td>
</tr>
<tr>
<td>Solubilidade</td>
<td></td>
</tr>
<tr>
<td>Origem do salitre</td>
<td>6</td>
</tr>
<tr>
<td>Fabrico do salitre artificial</td>
<td>7</td>
</tr>
<tr>
<td>Análise do cloreto de potássio</td>
<td>8</td>
</tr>
<tr>
<td>Ensaio do salitre bruto</td>
<td>9</td>
</tr>
<tr>
<td>Ensaio pelo método do ponto de cristalização</td>
<td>12</td>
</tr>
<tr>
<td>Processo de Gay-Lussac</td>
<td>13</td>
</tr>
<tr>
<td>Processo de Pelouze</td>
<td>18</td>
</tr>
<tr>
<td>Processo de Schlesing</td>
<td>15</td>
</tr>
<tr>
<td>Regimação do salitre</td>
<td>17</td>
</tr>
<tr>
<td>Princípios fundamentais do processo</td>
<td></td>
</tr>
<tr>
<td>Cozedura</td>
<td>19</td>
</tr>
<tr>
<td>Regas</td>
<td></td>
</tr>
<tr>
<td>Águas maes</td>
<td>20</td>
</tr>
<tr>
<td>Lavagem dos saes</td>
<td>21</td>
</tr>
<tr>
<td>Lavagem das lhamas</td>
<td></td>
</tr>
<tr>
<td>Ensaio do salitre refinado</td>
<td>22</td>
</tr>
<tr>
<td>Operações complementares da regimação do salitre</td>
<td>23</td>
</tr>
<tr>
<td>II. - Enxofre</td>
<td>24</td>
</tr>
<tr>
<td>Propriedades gerais</td>
<td></td>
</tr>
<tr>
<td>Extração do enxofre</td>
<td>25</td>
</tr>
<tr>
<td>1.º Processo</td>
<td></td>
</tr>
<tr>
<td>2.º Processo</td>
<td></td>
</tr>
<tr>
<td>3.º Processo</td>
<td>26</td>
</tr>
<tr>
<td>Regimação do enxofre</td>
<td></td>
</tr>
<tr>
<td>Enxofre em canudos</td>
<td>27</td>
</tr>
<tr>
<td>3.º Enxofre</td>
<td>28</td>
</tr>
<tr>
<td>Alzparelho de Court e Déjardin</td>
<td>29</td>
</tr>
<tr>
<td>Análise do enxofre</td>
<td>31</td>
</tr>
<tr>
<td>Pesquisa dos ácidos</td>
<td></td>
</tr>
<tr>
<td>Pesquisa das matérias terrestres</td>
<td></td>
</tr>
<tr>
<td>Pesquisa de arsenico</td>
<td></td>
</tr>
<tr>
<td>III. - Carvão</td>
<td>32</td>
</tr>
<tr>
<td>Especies de madeira empregada</td>
<td></td>
</tr>
<tr>
<td>Recepção da madeira</td>
<td>33</td>
</tr>
<tr>
<td>Conservação da madeira</td>
<td>34</td>
</tr>
<tr>
<td>Aquecimento dos materiais orgânicos</td>
<td>35</td>
</tr>
<tr>
<td>Carbonização em caldeiras</td>
<td>37</td>
</tr>
<tr>
<td>Destilação em cilindros - Cilindros fixos</td>
<td>38</td>
</tr>
<tr>
<td>Disposição gerais dos cilindros fixos</td>
<td>39</td>
</tr>
<tr>
<td>Carregamento dos cilindros e laboração</td>
<td>40</td>
</tr>
</tbody>
</table>
Capítulo 2°

Doseamento

I. Função que desempenha cada um dos componentes

II. Doseamento das diferentes polveras

III. Determinação teórica do doseamento da polvora

Capítulo 3°

Fabrico da polvora

I. Diferentes fases do fabrico da polvora:

- Trituração
- Triturador
- Mezcla en masa
- Mezcla de granice
- Encasque
- Trabalho das galgas
- Velocidade das galgas
- Duração da operação
- Granisador
- Granisador de retom
- Granisador com movimento de vai-vem
- Granisador Liebherv
- Iluminação
- Ensaio
- Ensaio ao ar livre
- Estanque
- Método de conduzir a operação
- Calibração
- Aproveitamento dos resíduos

II. Polvora perimétrica e de grosso grao

Generalidades

- Ação progressiva
- Regularidade de combustão

Capítulo 4°

Fabrico da polvora G G

- Composição ternaria
- Encasque nas galgas
- Primeira granisacao
- Encasque na prensa hidráulica
- Segunda granisacao no granisador ordinario
Capítulo 4.

Propriedades físicas e químicas da pólvora

<table>
<thead>
<tr>
<th>Determinação da força balística</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspecto exterior</td>
</tr>
<tr>
<td>Dureza do grão</td>
</tr>
<tr>
<td>Densidade</td>
</tr>
<tr>
<td>Determinação da densidade gravimétrica</td>
</tr>
<tr>
<td>Determinação da densidade real da pólvora por meio do álcool</td>
</tr>
<tr>
<td>Humidade e hydrometricidade</td>
</tr>
<tr>
<td>Prova de humidade</td>
</tr>
<tr>
<td>Prova de hydrometricidade</td>
</tr>
<tr>
<td>Resíduos de combustão</td>
</tr>
</tbody>
</table>

Propriedades químicas

<table>
<thead>
<tr>
<th>Determinação da forçada pólvora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse da pólvora</td>
</tr>
<tr>
<td>Determinação do salitre</td>
</tr>
<tr>
<td>Determinação do enxofre</td>
</tr>
<tr>
<td>Inflamação</td>
</tr>
<tr>
<td>Fala elevação de temperatura</td>
</tr>
<tr>
<td>Pelo contato dos corpos inflamados ou em ignição</td>
</tr>
<tr>
<td>Velocidade de inflamação</td>
</tr>
<tr>
<td>Combustão da pólvora</td>
</tr>
<tr>
<td>Velocidade de combustão</td>
</tr>
</tbody>
</table>

Determinação da força da pólvora

H. Cortejo favorável	95
Emprego do chronográfico de de la Boulangé	96
IV. Medida das pressões	97
Manometro de Rodman	98
Medida de var do manometro de Rodman	99
Manometro cròsher	100

Capítulo 5.

Armazenagem e transporte de pólvora

<table>
<thead>
<tr>
<th>Armazenagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixos</td>
</tr>
</tbody>
</table>
Capítulo 5º

Substâncias explosivas

I. - Algodão-pólvora

II. - Fabrico do algodão-pólvora

Processo Lenck

Lavagem do algodão

Tratamento de substâncias acídicas

Alcalizações do silicato solúvel

Outros processos

Processo Abel

III. - Propriedades do algodão-pólvora

Propriedades físicas

Aspecto

Solubilidade

Densidade

Humidade

IV. - Propriedades chimicas e mecânicas

Constituição chimica

Explosão

Combustão

V. - Alcalizações do algodão-pólvora

VI. - Ensaios

VII. - Nitroglicerina

VIII. - Fabrico da nitroglicerina

IX. - Propriedades da nitroglicerina

Proprriedades físicas

X. - Propriedades chimicas e mecânicas

XI. - Alcalizações da nitroglicerina

XII. - Dynamite

Dynamite de base inerte

XIII. - Fabrico da dynamite de base inerte

Acondicionamento

Recepção e verificação

XIV. - Propriedades da dynamite de base inerte

Propriedades físicas

XV. - Propriedades chimicas e mecânicas

Ação do calor

Ação de choque

XVI. - Fabrico da dynamite de base activa
XVII. - Propriedades da gelatina explosiva

XVIII. - Propriedades físicas

XVIII. - Propriedades químicas e mecânicas

XIX. - Aplicações da ignitante

XX. - Pulvínulo de mercúrio

XXI. - Emigrações e mercúrio

XXI. - Propriedades do pulvínulo de mercúrio

XXII. - Aplicações do pulvínulo de mercúrio

XXIII. - Peças de póloassa

XXIII. - Peças de anónia

Capítulo I.

Munições

I. - Cartuchos das bocas de gato

II. - Carregamento das granadas com balas

III. - Carregamento das granadas de picadas

IV. - Carregamento das granadas de maçã

V. - Carregamento das granadas de maçã

VI. - Carregamento das granadas de maçã

VII. - Carregamento das granadas de maçã

VIII. - Carregamento das granadas de maçã

IX. - Carregamento das granadas de maçã

X. - Carregamento das granadas de maçã

XI. - Carregamento das granadas de maçã

XII. - Carregamento das granadas de maçã

XIII. - Carregamento das granadas de maçã

XIV. - Carregamento das granadas de maçã

XV. - Carregamento das granadas de maçã

XVI. - Carregamento das granadas de maçã

XVII. - Carregamento das granadas de maçã

XVIII. - Carregamento das granadas de maçã

XIX. - Carregamento das granadas de maçã

XX. - Carregamento das granadas de maçã

XXI. - Carregamento das granadas de maçã

XXII. - Carregamento das granadas de maçã

XXIII. - Carregamento das granadas de maçã

XXIV. - Carregamento das granadas de maçã

XXV. - Carregamento das granadas de maçã

XXVI. - Carregamento das granadas de maçã

XXVII. - Carregamento das granadas de maçã

XXVIII. - Carregamento das granadas de maçã

XXIX. - Carregamento das granadas de maçã

XXX. - Carregamento das granadas de maçã

XXXI. - Carregamento das granadas de maçã

XXXII. - Carregamento das granadas de maçã

XXXIII. - Carregamento das granadas de maçã

XXXIV. - Carregamento das granadas de maçã

XXXV. - Carregamento das granadas de maçã

XXXVI. - Carregamento das granadas de maçã

XXXVII. - Carregamento das granadas de maçã

XXXVIII. - Carregamento das granadas de maçã

XXXIX. - Carregamento das granadas de maçã

XL. - Carregamento das granadas de maçã

XLI. - Carregamento das granadas de maçã

XLII. - Carregamento das granadas de maçã

XLIII. - Carregamento das granadas de maçã

XLIV. - Carregamento das granudas de maçã

XLV. - Carregamento das granadas de maçã

XLVI. - Carregamento das granadas de maçã

XLVII. - Carregamento das granadas de maçã

XLVIII. - Carregamento das granadas de maçã

XLIX. - Carregamento das granadas de maçã

L. - Carregamento das granadas de maçã

LI. - Carregamento das granadas de maçã

LII. - Carregamento das granadas de maçã

LIII. - Carregamento das granadas de maçã

LIV. - Carregamento das granadas de maçã

LV. - Carregamento das granadas de maçã

LVI. - Carregamento das granadas de maçã

LVII. - Carregamento das granadas de maçã

LVIII. - Carregamento das granadas de maçã

LIX. - Carregamento das granadas de maçã

LX. - Carregamento das granadas de maçã

LXI. - Carregamento das granadas de maçã

LXII. - Carregamento das granadas de maçã

LXIII. - Carregamento das granadas de maçã

LXIV. - Carregamento das granadas de maçã

LXV. - Carregamento das granadas de maçã

LXVI. - Carregamento das granadas de maçã

LXVII. - Carregamento das granadas de maçã

LXVIII. - Carregamento das granadas de maçã

LXIX. - Carregamento das granadas de maçã

LXX. - Carregamento das granadas de maçã

LXXI. - Carregamento das granadas de maçã

LXXII. - Carregamento das granadas de maçã

LXXIII. - Carregamento das granadas de maçã

LXXIV. - Carregamento das granadas de maçã

LXXV. - Carregamento das granadas de maçã

LXXVI. - Carregamento das granadas de maçã

LXXVII. - Carregamento das granadas de maçã

LXXVIII. - Carregamento das granadas de maçã

LXXIX. - Carregamento das granadas de maçã

LXXX. - Carregamento das granadas de maçã

LXXXI. - Carregamento das granadas de maçã

LXXXII. - Carregamento das granadas de maçã

LXXXIII. - Carregamento das granadas de maçã

LXXXIV. - Carregamento das granadas de maçã

LXXXV. - Carregamento das granadas de maçã

LXXXVI. - Carregamento das granadas de maçã

LXXXVII. - Carregamento das granadas de maçã

LXXXVIII. - Carregamento das granadas de maçã

LXXXIX. - Carregamento das granadas de maçã

XC. - Carregamento das granadas de maçã

XCI. - Carregamento das granadas de maçã

XCII. - Carregamento das granadas de maçã

XCIII. - Carregamento das granadas de maçã
Capítulo 8.
Cartuchos para metralhadoras

| Capítulo 8. |
| --- | --- |
| Artifícios de guerra para comunicação de fogo |
| Murrão, estojo e vela mista | 152 |
| Murrão |
| Modo de preparar o murrão |
| Preparação pela lexíca | 152 |
| Estojo |
| Modo de preparar o estojo |
Vela mista ou de composição	153
Modo de preparar a vela mista	154
Carregamento	155
Encasamento	156
II. - Escorvas	
Diferentes sistemas de escorvas	
Escorvas de inflamação	157
Escorvas de papel vasoado	158
Escorvas de percussão	159
Escorvas de gricaão	160
Escorva sobrevivente - sistema Krugs	161
Escorvas elétricas	162
Escorva dos iquiteles	163
Escorva de tensão	164

Capítulo 9.
Artifícios de sinaos, artifícios de esclarecer, artifícios incendiários, composições asfixiantes

| Capítulo 9. |
| --- | --- |
| Artifícios de sinaos | 167 |
| Tacho de sinaos N.º 1 |
Tacho de sinaos N.º 2	168
Foguetes de sinaos	169
Fogos de estojo	170
Fogos de cor	171

Capítulo 10.
Artifícios de esclarecer | 172 |
| Artifícios de posição |
Arco-tolos	173
Artifícios Lanarre	174
Preparação do ole de linhaça viscose	175
Preparação do estojo	176
Composição brancas .. 179
Composição vermelha .. 179
Aroelas alcaídas ... 181
Preparação das aroelas 181
Alcatroar as aroelas .. 182
Forchas alcaídas .. 182
Preparação das forchas 182
Alcatroar as forchas .. 182
Barrel de esclarecer .. 183
Artifícios de projecção 184
Bala de esclarecer com involucro de papel 185
Granada de esclarecer 185

III. Artifícios de incendiár
Composição da pedra de fogo
Petroleo ...
Fogo gregoriano ..
Fogo jeniano ... Composição austriaca
Composição Lamarre

IV. Composição assphyventes.
Bala de gume ..
Artifício de sofocar
Artifício de gume ..

Apêndice

Luz elétrica ... 190

Aparelhos de projecção 190
Projector Maquin .. 191
Lampião ...
Dimensões do campo iluminado 194
Transmissão da corrente 195
Disposição que se dá aos projectores e máquinas para o serviço de campanha 197
Máquina elétrica ...
Condutores ... Modelo de forraça e custo 198
Modelo de encaixe 198
Modelo para fortes bastiões